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Markov random fields are classical models for Bayesian image modeling [1], but their sampling relies tra-
ditionally on Gibbs techniques, implying a non-negligible computational cost. On the other hand, Gaussian
Markov random fields (GMRF), which are used to model continuous and spatially-homogeneous variables, can
benefit from highly efficient sampling techniques [2]. In this contribution, we propose a new discrete Markov
field, based on a unit-simplex geometry, and coined Gaussian unit-simplex Markov field (GUM). The core of
our proposition follows results from the three following definitions.

Definition 1 (Unit simplex). A unit P-simplex is a regular simplex belonging in RP , whose P + 1 vertices lie
on a unit sphere. Let us denote UP = {v1, . . . ,vP+1} the set of vertices of the unit P -simplex.

Definition 2 (Gaussian Unit-simplex Markov random field (GUM)). Let UK−1 be the K vertices of a unit
(K − 1)-simplex (Definition 1), and Z ∼ N (0,Σ) a GMRF taking values in Rn(K−1), such that Z = {Zs}s∈S
and Zs takes values in RK−1. We define the mapping ϕK,c : Rn(K−1) 7→ Rn such that:

ϕK,c(Z) =

K∑
i=1

ωiπ
c
i (Z) and ∀s ∈ S, πc

i (Zs) =
exp(−c−2∥Zs − vi∥2)∑K

k=1 exp(−c−2∥Zs − vk∥2)
(1)

with c > 0, vk,vi ∈ UK−1 unit simplex vertices, and ωi ∈ Ω ⊂ N. ϕK,c(Z) is named a GUM random field. πc
i

is designed to indicate, site-wise, the distance between Z and the i−th vertices vi of UK−1. We can show that
ϕK,c(Z) is also Markovian.

Definition 3 (Discrete GUM). Let Z be a GMRF. From Definition 2, we have:

ϕK,c(Z) −→
c→0

K∑
i=1

ωiδ[∥Z−vi∥2≤∥Z−vk∥2, ∀vk∈UK−1

] (2)

Denoting lim
c→0

ϕK,c(Z) = X = {Xs}s∈S , we have ∀s ∈ S:

Xs = ωk∗ with k∗ chosen such that vk∗ = argmin
v∈UK−1

∥Zs − v∥2 (3)

This discrete limit process will be referred to as a Discretized GUM or DGUM.

A depiction of GUM sampling is provided in Fig. 1. The computational complexity of the proposed method
is that of GMRF sampling, so the proposed model can be sampled notably faster than Ising/Potts based
models relying on Gibbs sampling. Our computation time is indeed improved by a factor 14 to 68 for the GPU
implementation, and by a factor 200 to 290 in the CPU implementation, depending on the sample size.

Our main perspective is the development of an unsupervized inference similar based on the same models,
for which the computational improvement should leverage the use of several latent field, within large images
and/or 3D volumes.

(a) Realization z:
first component

(b) Realization z: sec-
ond component

(c) ϕK,c(z) with
c = 1.

(d) ϕK,c(z) with
c = 0.5.

(e) ϕK,c(z) with
c = 0.25.

(f) DGUM of z.

Figure 1: Illustration of the DGUM sampling for K = 3 classes, starting from the GMRF realizations (a-b), to
the GUM (c-e) and its limit DGUM (f).

References.

[1] Z. Kato, J. Zerubia et al., “Markov random fields in image segmentation,” Foundations and Trends® in Signal
Processing, vol. 5, no. 1–2, pp. 1–155, 2012.

[2] H. Rue and L. Held, Gaussian Markov random fields: theory and applications. Chapman and Hall/CRC, 2005.

1


