
The calculation of the probability of observations in a HMM knowing the parameters 
of the model can be done classically with the forward or the forward-backward 
algorithm. Knowing that, we formalize the notion of an un-normalized heterogeneous 
Markov distributions (UHMD), as a tensor associated to a joint distribution, where 
these algorithms correspond to an elimination and marginalisation algorithm 
respectively, based on a series of matrix x vector products on a tensor network. It 
leads to a complexity in O(TK2) for normalising constant and computing all unary 
marginals. We show how the sparsity of the transition matrix permits to decrease the 
complexity of the calculation. We use this dictionary to extend within a common 
framework the evaluation of the complexity of forward and forward-backward 
algorithms for a diversity of Markov based Models with hidden variables. We show 
how to map the joint law of a HMM into a UHMD for computing the distribution of 
the observations after marginalisation over the hidden variables. This is extended to 
multichain HMM, and leads to bound the complexity according to the type of 
couplings using the decomposition or not of the transition matrix as a Kronecker 
product of univariate matrices, including the Factorial Model. We use the generative 
model for an ED-HMM to rewrite it as a UHMD, show that the transition matrix is 
sparse, and show how the sparsity can lower the upper bound of the complexity of the 
forward-backward algorithm. We present ways to possibly extend this approach 
towards some cases of multichains HSMM. Finally, we recall that the field property 
of R, i.e. the inversion of the multiplication, and even of the addition, is not required 
in matrix x vector product in the definition of an UHMD. This means that all these 
calculations can be implemented in a semi-ring. Such an implementation is classical 
in max-plus semi-ring and leads to Viterbi algorithm, corresponding to an elimination 
algorithm, which can be deployed this way on all mentioned models of the Markov 
family to recover most likely hidden states.
  


