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Piecewise-deterministic Markov process (PDMP)

@ Introduced in the 80's by Davis

@ The class is “wide enough to include as special cases virtually all the
non-diffusion models of applied probability”

e MC, CT-MC, M/G/1 queue, G/G/1 queue C PDMP

o X

1 =
@ Deterministic motion: V0 <t < Sy, Xp, 44 = O(t|x)
@ Random time:

t
P(Sy > 1) = exp(— [ (<1>(s|x>)ds) Lorer ()

@ Random jump:

E[o(Xr,) | ®(S2]2)] = J P(u)Q(dul2(S2|z))
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Typical PDMP in dimension 1: growth-fragmentation

o Growth: ®(-|z) 7, e.g. ®(t|z) =z + 6Ot
o Fragmentation: Q((0,z)|z) = 1, e.g. Q(+|x) = Ofpa)
Temperature: 27°C
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Statistical framework: one-dimensional PDMP

o & is known
o First n jumps (exactly) observed: (Zy, Si+1)o<ksn

@ Ergodicity condition: asymptotic statistics

Question: nonparametric estimation of A?
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o First n jumps (exactly) observed: (Zy, Si+1)o<ksn

@ Ergodicity condition: asymptotic statistics

Question: nonparametric estimation of A?

Statistical framework: one-dimensional PDMP

Invariant measures

X, - NCT

Ly =
Zr_L = q)(snvzn—l) i //L_

3/22



Strategies from the literature (1/2)

Fujii (2013)
o D(t|z) =z + [§ A(®(s]z))ds
@ Estimation of uT through the local time, in relation with 4~ and A

@ 4 estimated by kernel methods (in the (true) time of the process)

@ Uniform convergence in probability
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Strategies from the literature (1/2)

Fujii (2013)

O(t|lz) = z + [§ A(D(s|z))ds

@ Estimation of uT through the local time, in relation with 4~ and A

g

@ 4 estimated by kernel methods (in the (true) time of the process)

@ Uniform convergence in probability

Azais and Muller-Gueudin (2016)
— @ Multidimensional PDMP with forced jumps

@ A\(®(t|x)) estimated as the ratio of two invariant measures
~ collection of consistent estimators of A(z)

e @ Selection of the estimator with minimal asymptotic variance

@ Pointwise almost sure convergence and central limit theorem
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Strategies from the literature (2/2)

Krell (2016)

Q(+|z) = d¢n(2)} assumed to be known

h o ®(-|z) as a change of variable ~ relation between \ and p

@ u estimated by kernel methods

@ Convergence of the mean integrated square error to 0
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Strategies from the literature (2/2)

Krell (2016)
@ Q(:|z) = 8(n(x)) assumed to be known
i @ ho ®(-|z) as a change of variable ~ relation between A and p

B @ u estimated by kernel methods

@ Convergence of the mean integrated square error to 0

Krell and Schmisser (2021)
@ General Q, not assumed to be known
@ &(-|x) as a change of variable ~ relation between X\ and p~

@ u estimated by projection methods

@ Estimator nearly minimax (up to a log” n factor)
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Observation 1

o Different statistical frameworks
o Different estimation methods
@ Different convergence results

~» Estimation strategies are difficult to compare
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Observation 1

o Different statistical frameworks
o Different estimation methods
@ Different convergence results

~» Estimation strategies are difficult to compare

Observation 2

Fujii (2013) and Krell and Schmisser (2021) estimate A via

Az)p” (x)
P.(Zo<x<7)

AMz) =

where A(z) = 8,2(0|x)

6/ 22



Standardization (1/2)

General one-dimensional PDMP
Invariant measures estimated by (non-recursive) kernel methods
Asymptotics in the number of jumps observed

Goal: central limit theorem with explicit variance
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@ General one-dimensional PDMP

@ Invariant measures estimated by (non-recursive) kernel methods

Asymptotics in the number of jumps observed

@ Goal: central limit theorem with explicit variance

Krell (2016): Q(:|xz) = d(p(x); Where h is assumed to be known
. z:f‘; K, (Z = h(z))

X, (z) = B (2)A(z) x T
Ly Yzizy Nz, 2h(o))

Fujii (2013) and Krell and Schmisser (2021)

lZ?lKh Z —CC)

3 (2) = A(z) x -
Ly Wzseezi)
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Standardization (2/2)

Azais and Muller-Gueudin (2016)
- Y K (Z; = 2) Ky (Sign — )
Ly K (Zi — 2)1is,, 1)

Ao &, (t]z) =

A (2) = Xo B, (m,(€)]€)  with §=argcmaxu(')G(Tm(')|')

n—1
X:(I) =Xo @, (7,(&)]E) with ¢= arg max Z K2 (Zi=)1(s,.,57.())
s =0
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Baseline

o Almost sure convergence: A, (), X:(m) and )\:(x) tend to A(z)

o Central limit theorem for /\:(x)
kst [X:m - A(x)} (0,05 ()

Az)
maxeec, H(§)G(7,(£)]€)

where

oa(z) =
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Baseline

o Almost sure convergence: A, (), X:(:p) and )\:(m) tend to A(z)

o Central limit theorem for /\:(x)
kst [x:m - A(x)} (0,05 ()

Az)
maxeee, PE)G(m (E)]E)

where

o ()=

Main theorem: asymptotic normality

Under ergodicity and regularity conditions,
Vit [X0 () = A@)] = N(0,0% (2)
Vil [ 3 (@) = A@)] = N(0.04(2))

where
*Mz)?
p(x)

Mz)?h (2)
p(x)

o’ (x) = and ai(x) =
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3o () vs. AL (2)

@ Same rate: /nh,

o o2 (z)= h'(x)ai(m)
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3o () vs. AL (2)

@ Same rate: /nh,

o o2 (z)= h'(x)ai(m)

Examples
@ Linear fragmentation: h(z) = kz, 0< Kk < 1

Then o (z) = /mi(m) and X, is uniformly better than 3\:

@ h(x)==x/(1+exp(—z)) is sublinear
o h'(1) <1 ~ A, (1) is better than 5\:(1)

o B'(2) > 1 ~ A¥(2) is better than X, (2)
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Comparison with )\:(x) is trickier

@ Rate of )\:(m) \nhSht,
o Rate of \,, (z) and X:(x) Vnh,

Extremal cases

@ h,=h: A: is asymptotically disqualified
@ h,, = h3ht: direct comparison of variances is valid

In practice, bandwidths are chosen from the available data
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Growth-fragmentation model
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Comparison from one sample (not robust)
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Variance from the central limit theorem (not normalized)
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Expected asymptotic variance (normalized)
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Expected asymptotic variance vs. estimation error
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Expected asymptotic variance vs. estimation error
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Tanouchi et al.

Real data analysis (1/4)

— Data description —

(2017): cell growth and division data (E. coli)

Temperature Lineages Measurements  Division events
25°C Total: 65 307999 4485
SCIENTIFIC Average: — 4738.44 68.67
DATA . Total: 54 202086 3726
Average: — 3742.33 69
37°C Total: 160 364 920 11040
Average: — 2280.75 69
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Temperature Lineages Measurements  Division events
25°C Total: 65 307999 4485
SDC‘AE?XHC Average: — 4738.44 68.67
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Real data analysis (2/4)

— Modeling —
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@ Cell growth looks linear in log scale
@ Slope estimated for each of the cells
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Real data analysis (2/4)

— Modeling —
. 370
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@ Cell growth looks linear in log scale
@ Slope estimated for each of the cells ~ pretty sharp distribution

@ Common slope under each temperature condition: ®(¢|z) =z + 6t
Temperature | 25°C  27°C  37°C
0 0.012 0.014 0.025
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Real data analysis (3/4)

— Estimation procedures —

° A: can not be evaluated
@ Argument selection simplified for 5\: :\:(x) =Ao®,(7|z-01)

Temperature | 25°C  27°C  37°C
T 66.6 524 316

@ Bandwidth selection

Temperature | Sample size | ¢ @ (space) @ (time)

25°C 4485 0.05 0.06 4
27°C 3726 0.07 0.08 8
37°C 11040 0.02 0.03 3
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Temperature: 25°C

Real data analysis (4/4)

— Estimation results —

S (exp()) vs. A (exp(z))

Temperature: 27°C

Temperature: 37°C
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Take-home message

@ Asymptotic variances can not be ordered
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Azais and Denis (2025)

EI‘XiV Asymptotic analysis and practical evaluation of jump rate estimators
in piecewise-deterministic Markov processes

Thank you for your attention!




