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Piecewise-deterministic Markov process (PDMP)

Introduced in the 80’s by Davis

The class is “wide enough to include as special cases virtually all the
non-diffusion models of applied probability”

MC, CT-MC, M/G/1 queue, G/G/1 queue ⊂ PDMP

Initial condition: X0 = x

Deterministic motion: ∀ 0 ≤ t < T1, Xt = Φ(t∣x)

Random time:

P(T1 > t) = exp (−∫
t

0
λ (Φ(s∣x))ds)1{0≤t<t+(x)}

Random jump:

E [φ(XT1
) ∣Φ(T1∣x)] = ∫ φ(u)Q(du∣Φ(T1∣x))
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Typical PDMP in dimension 1: growth-fragmentation

Growth: Φ(⋅∣x) 1, e.g. Φ(t∣x) = x + θt

Fragmentation: Q((0, x)∣x) = 1, e.g. Q(⋅∣x) = δ{h(x)}
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Statistical framework: one-dimensional PDMP

Φ is known

First n jumps (exactly) observed: (Zk, Sk+1)0≤k≤n
Ergodicity condition: asymptotic statistics

Question: nonparametric estimation of λ?

Invariant measures
Xt → µ

CT
Zn → µ

Z
−
n = Φ(Sn, Zn−1) → µ

−
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Strategies from the literature (1/2)

Fujii (2013)

Φ(t∣x) = x + ∫ t

0 ∆(Φ(s∣x))ds

Estimation of µCT through the local time, in relation with µ
− and λ

µ
− estimated by kernel methods (in the (true) time of the process)

Uniform convergence in probability

Azaïs and Muller-Gueudin (2016)

Multidimensional PDMP with forced jumps

λ(Φ(t∣x)) estimated as the ratio of two invariant measures
↝ collection of consistent estimators of λ(x)

Selection of the estimator with minimal asymptotic variance

Pointwise almost sure convergence and central limit theorem
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Strategies from the literature (2/2)

Krell (2016)

Q(⋅∣x) = δ{h(x)} assumed to be known

h ◦Φ(⋅∣x) as a change of variable ↝ relation between λ and µ

µ estimated by kernel methods

Convergence of the mean integrated square error to 0

Krell and Schmisser (2021)

General Q, not assumed to be known

Φ(⋅∣x) as a change of variable ↝ relation between λ and µ
−

µ
− estimated by projection methods

Estimator nearly minimax (up to a log
2
n factor)
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Observation 1

Different statistical frameworks

Different estimation methods

Different convergence results

↝ Estimation strategies are difficult to compare

Observation 2

Fujii (2013) and Krell and Schmisser (2021) estimate λ via

λ(x) = ∆(x)µ−(x)
Pµ(Z0 ≤ x < Z1)

where ∆(x) = ∂tΦ(0∣x)
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Standardization (1/2)

General one-dimensional PDMP

Invariant measures estimated by (non-recursive) kernel methods

Asymptotics in the number of jumps observed

Goal: central limit theorem with explicit variance

Krell (2016): Q(⋅∣x) = δ{h(x)} where h is assumed to be known

λ̂
♣
n (x) = h

′(x)∆(x) ×
1
n
∑n−1

i=0 Khn
(Zi − h(x))

1
n
∑n−1

i=0 1{Zi≤x}1{Zi+1≥h(x)}

Fujii (2013) and Krell and Schmisser (2021)

λ̂
♦
n (x) = ∆(x) ×

1
n
∑n

i=1 Khn
(Z−

i − x)
1
n
∑n−1

i=0 1{Zi≤x<Z
−
i+1}

7 / 22
▲



Standardization (1/2)

General one-dimensional PDMP

Invariant measures estimated by (non-recursive) kernel methods

Asymptotics in the number of jumps observed

Goal: central limit theorem with explicit variance

Krell (2016): Q(⋅∣x) = δ{h(x)} where h is assumed to be known

λ̂
♣
n (x) = h

′(x)∆(x) ×
1
n
∑n−1

i=0 Khn
(Zi − h(x))

1
n
∑n−1

i=0 1{Zi≤x}1{Zi+1≥h(x)}

Fujii (2013) and Krell and Schmisser (2021)

λ̂
♦
n (x) = ∆(x) ×

1
n
∑n

i=1 Khn
(Z−

i − x)
1
n
∑n−1

i=0 1{Zi≤x<Z
−
i+1}

7 / 22
▲



Standardization (1/2)

General one-dimensional PDMP

Invariant measures estimated by (non-recursive) kernel methods

Asymptotics in the number of jumps observed

Goal: central limit theorem with explicit variance

Krell (2016): Q(⋅∣x) = δ{h(x)} where h is assumed to be known

λ̂
♣
n (x) = h

′(x)∆(x) ×
1
n
∑n−1

i=0 Khn
(Zi − h(x))

1
n
∑n−1

i=0 1{Zi≤x}1{Zi+1≥h(x)}

Fujii (2013) and Krell and Schmisser (2021)

λ̂
♦
n (x) = ∆(x) ×

1
n
∑n

i=1 Khn
(Z−

i − x)
1
n
∑n−1

i=0 1{Zi≤x<Z
−
i+1}

7 / 22
▲



Standardization (2/2)

Azaïs and Muller-Gueudin (2016)

λ̂ ◦ Φn(t∣x) =
1
n
∑n−1

i=0 Khs
n
(Zi − x)Kht

n
(Si+1 − t)

1
n
∑n−1

i=0 Khs
n
(Zi − x)1{Si+1>t}

λ̊
♠
n (x) = λ̂ ◦ Φn(τx(ξ)∣ξ) with ξ = argmax

Cx

µ(⋅)G(τx(⋅)∣⋅)

λ̂
♠
n (x) = λ̂ ◦ Φn(τx(ξ)∣ξ) with ξ = argmax

Cx

n−1

∑
i=0

Khs
n
(Zi−⋅)1{Si+1>τx(⋅)}
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Baseline

Almost sure convergence: λ̂
♣
n (x), λ̂♦n (x) and λ̊

♠
n (x) tend to λ(x)

Central limit theorem for λ̊♠n (x)
√
nhs

nh
t
n [̊λ♠n (x) − λ(x)] → N (0, σ2

♠(x))

where

σ
2

♠(x) = τ
4
λ(x)

maxξ∈Cx
µ(ξ)G(τx(ξ)∣ξ)

Main theorem: asymptotic normality

Under ergodicity and regularity conditions,
√
nhn [λ̂♣n (x) − λ(x)] → N (0, σ2

♣(x))
√
nhn [λ̂♦n (x) − λ(x)] → N (0, σ2

♦(x))

where

σ
2
♣(x) = τ

2
λ(x)2h′(x)
µ−(x) and σ

2
♦(x) = τ

2
λ(x)2

µ−(x)
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λ̂
♣
n (x) vs. λ̂

♦
n (x)

Same rate:
√
nhn

σ
2

♣(x) = h
′(x)σ2

♦(x)

Examples

Linear fragmentation: h(x) = κx, 0 < κ < 1

Then σ
2

♣(x) = κσ
2

♦(x) and λ̂
♣
n is uniformly better than λ̂

♦
n

h(x) = x/(1 + exp(−x)) is sublinear

h
′(1) < 1 ↝ λ̂

♣
n (1) is better than λ̂

♦
n (1)

h
′(2) > 1 ↝ λ̂

♦
n (2) is better than λ̂

♣
n (2)
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Comparison with λ̊
♠
n (x) is trickier

Rate of λ̊♠n (x):
√
nhs

nh
t
n

Rate of λ̂♣n (x) and λ̂
♦
n (x):

√
nhn

Extremal cases

hn = h
s
n: λ̊

♠
n is asymptotically disqualified

hn = h
s
nh

t
n: direct comparison of variances is valid

In practice, bandwidths are chosen from the available data
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Growth-fragmentation model

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ(x) = x
Φ(t∣x) = x + t

Q(dy∣x) = δ{κx}(dy)

µ
CT(x) =

√
2/π

+∞

∏
n=0

(1 − κ2n+1)

+∞

∑
n=0

κ
−2n

n

∏
k=1

(1 − κ−2k)
exp (−κ

−2n
x
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Bandwidth selection

h
⋆
= argmin

h∈R∗
+

∥λ − λ̂∥L2
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Comparison from one sample (not robust)
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Variance from the central limit theorem (not normalized)
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Expected asymptotic variance (normalized)
— κ = 0.4 —
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Expected asymptotic variance vs. estimation error
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Real data analysis (1/4)
— Data description —

Tanouchi et al. (2017): cell growth and division data (E. coli)

Temperature Lineages Measurements Division events

25◦C Total: 65 307 999 4 485
Average: — 4738.44 68.67

27◦C Total: 54 202 086 3 726
Average: — 3742.33 69

37◦C Total: 160 364 920 11 040
Average: — 2280.75 69
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Division mechanism ≠ δ{h(x)}

↝ λ̂
♣
n is excluded
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Real data analysis (2/4)
— Modeling —
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Cell growth looks linear in log scale

Slope estimated for each of the cells

Common slope under each temperature condition: Φ(t∣x) = x + θt

Temperature 25◦C 27◦C 37◦C
θ 0.012 0.014 0.025
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Real data analysis (3/4)
— Estimation procedures —

λ̊
♠
n can not be evaluated

Argument selection simplified for λ̂♠n : λ̂
♠
n (x) = λ̂ ◦Φn(τ ∣x − θτ)

Temperature 25◦C 27◦C 37◦C
τ 66.6 52.4 31.6

Bandwidth selection

Temperature Sample size ♦ ♠ (space) ♠ (time)
25◦C 4 485 0.05 0.06 4
27◦C 3 726 0.07 0.08 8
37◦C 11 040 0.02 0.03 3
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Real data analysis (4/4)
— Estimation results —

λ̂
♦
n (exp(x)) vs. λ̂

♠
n (exp(x))
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Take-home message

Asymptotic variances can not be ordered

λ̊
♠
n and λ̂

♠
n are the most affected by bias

λ̂
♦
n is more general than λ̂

♣
n and achieves pretty similar results

Bandwidth parameters of λ̊♠n and λ̂
♠
n are difficult to tune

↝ λ̂
♦
n from Fujii (2013) and Krell and Schmisser (2021) tends to be

the best estimator of λ in dimension 1!

Azaïs and Denis (2025)
Asymptotic analysis and practical evaluation of jump rate estimators
in piecewise-deterministic Markov processes

Thank you for your attention!
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