Asymptotic comparison of nonparametric jump rate estimators for one-dimensional piecewise-deterministic Markov processes

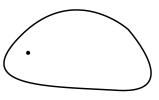
Romain Azaïs and Solune Denis

July 1st 2025 | Paris

- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue ⊂ PDMP

- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue ⊂ PDMP



• Initial condition: $X_0 = x$

- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- Initial condition: $X_0 = x$
- Deterministic motion: $\forall 0 \le t < T_1, X_t = \Phi(t|x)$

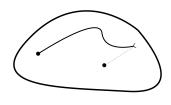
- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP



- Initial condition: $X_0 = x$
- Deterministic motion: $\forall 0 \le t < T_1, X_t = \Phi(t|x)$
- Random time:

$$\mathbb{P}(T_1 > t) = \exp\left(-\int_0^t \lambda\left(\Phi(s|x)\right) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue ⊂ PDMP



- Initial condition: $X_0 = x$
- Deterministic motion: $\forall 0 \le t < T_1, X_t = \Phi(t|x)$
- Random time:

$$\mathbb{P}(T_1 > t) = \exp\left(-\int_0^t \lambda\left(\Phi(s|x)\right) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

Random jump:

$$\mathbb{E}\big[\varphi(X_{T_1})\,|\,\Phi(T_1|x)\big] = \int \varphi(u)Q(\mathrm{d}u|\Phi(T_1|x))$$

- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue ⊂ PDMP

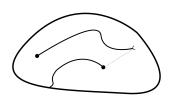


- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue ⊂ PDMP



- $\bullet \ \ X_{T_1} = x$
- Deterministic motion: $\forall 0 \le t < S_2, X_{T_1+t} = \Phi(t|x)$

- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue ⊂ PDMP

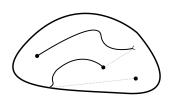


$$\bullet \ \ X_{T_1} = x$$

- Deterministic motion: $\forall 0 \le t < S_2, X_{T_1+t} = \Phi(t|x)$
- Random time:

$$\mathbb{P}(S_2 > t) = \exp\left(-\int_0^t \lambda\left(\Phi(s|x)\right) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

- Introduced in the 80's by Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue ⊂ PDMP



$$\bullet \ \ X_{T_1} = x$$

- Deterministic motion: $\forall 0 \le t < S_2, X_{T_1+t} = \Phi(t|x)$
- Random time:

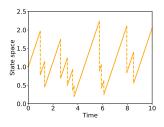
$$\mathbb{P}(S_2 > t) = \exp\left(-\int_0^t \lambda\left(\Phi(s|x)\right) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

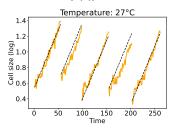
Random jump:

$$\mathbb{E}\big[\varphi(X_{T_2})\,|\,\Phi(S_2|x)\big] = \int \varphi(u)Q(\mathrm{d}u|\Phi(S_2|x))$$

Typical PDMP in dimension 1: growth-fragmentation

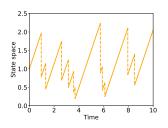
- Growth: $\Phi(\cdot|x)$ /, e.g. $\Phi(t|x) = x + \theta t$
- Fragmentation: Q((0,x)|x) = 1, e.g. $Q(\cdot|x) = \delta_{\{h(x)\}}$

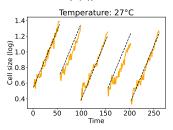




Typical PDMP in dimension 1: growth-fragmentation

- Growth: $\Phi(\cdot|x)$ /, e.g. $\Phi(t|x) = x + \theta t$
- Fragmentation: Q((0,x)|x) = 1, e.g. $Q(\cdot|x) = \delta_{\{h(x)\}}$





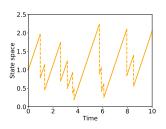
Statistical framework: one-dimensional PDMP

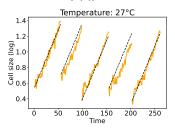
- \bullet Φ is known
- First n jumps (exactly) observed: $(Z_k, S_{k+1})_{0 \le k \le n}$
- Ergodicity condition: asymptotic statistics

Question: nonparametric estimation of λ ?

Typical PDMP in dimension 1: growth-fragmentation

- Growth: $\Phi(\cdot|x)$ /, e.g. $\Phi(t|x) = x + \theta t$
- Fragmentation: Q((0,x)|x) = 1, e.g. $Q(\cdot|x) = \delta_{\{h(x)\}}$





Statistical framework: one-dimensional PDMP

- ullet Φ is known
- First n jumps (exactly) observed: $(Z_k, S_{k+1})_{0 \le k \le n}$
- Ergodicity condition: asymptotic statistics

Question: nonparametric estimation of λ ?

Invariant measures

$$X_t \to \mu^{\mathsf{c}\mathsf{T}} \qquad Z_n \to \mu$$

 $Z_n^- = \Phi(S_n, Z_{n-1}) \to \mu^-$

Strategies from the literature (1/2)

Fujii (2013)

- $\Phi(t|x) = x + \int_0^t \Delta(\Phi(s|x)) ds$
- Estimation of μ^{CT} through the local time, in relation with μ^- and λ
- \bullet μ^- estimated by kernel methods (in the (true) time of the process)
- Uniform convergence in probability

Strategies from the literature (1/2)

Fujii (2013)

- $\Phi(t|x) = x + \int_0^t \Delta(\Phi(s|x)) ds$
- Estimation of μ^{ct} through the local time, in relation with μ^- and λ
- \bullet μ^- estimated by kernel methods (in the (true) time of the process)
- Uniform convergence in probability

Azaïs and Muller-Gueudin (2016)

- Multidimensional PDMP with forced jumps
- $\lambda(\Phi(t|x))$ estimated as the ratio of two invariant measures \rightarrow collection of consistent estimators of $\lambda(x)$
- Selection of the estimator with minimal asymptotic variance
- Pointwise almost sure convergence and central limit theorem

Strategies from the literature (2/2)

Krell (2016)

- $Q(\cdot|x) = \delta_{\{h(x)\}} \text{ assumed to be known}$ $h \circ \Phi(\cdot|x) \text{ as a change of variable } \rightarrow \text{ relation between } \lambda \text{ and } \mu$ $\mu \text{ estimated by kernel methods}$

 - Convergence of the mean integrated square error to 0

Strategies from the literature (2/2)

Krell (2016)

- $Q(\cdot|x) = \delta_{\{h(x)\}} \text{ assumed to be known}$ $h \circ \Phi(\cdot|x) \text{ as a change of variable} \rightsquigarrow \text{relation between } \lambda \text{ and } \mu$ $\mu \text{ estimated by kernel methods}$

 - Convergence of the mean integrated square error to 0

Krell and Schmisser (2021)

- General Q, not assumed to be known
- $\Phi(\cdot|x)$ as a change of variable \rightarrow relation between λ and μ^-
- \bullet μ^- estimated by projection methods
- Estimator nearly minimax (up to a $\log^2 n$ factor)

Observation 1

- Different statistical frameworks
- Different estimation methods
- Different convergence results
- → Estimation strategies are difficult to compare

Observation 1

- Different statistical frameworks
- Different estimation methods
- Different convergence results
- → Estimation strategies are difficult to compare

Observation 2

Fujii (2013) and Krell and Schmisser (2021) estimate λ via

$$\lambda(x) = \frac{\Delta(x)\mu^{-}(x)}{\mathbb{P}_{\mu}(Z_0 \le x < Z_1)}$$

where
$$\Delta(x) = \partial_t \Phi(0|x)$$

Standardization (1/2)

- General one-dimensional PDMP
- Invariant measures estimated by (non-recursive) kernel methods
- Asymptotics in the number of jumps observed
- Goal: central limit theorem with explicit variance

Standardization (1/2)

- General one-dimensional PDMP
- Invariant measures estimated by (non-recursive) kernel methods
- Asymptotics in the number of jumps observed
- Goal: central limit theorem with explicit variance

Krell (2016): $Q(\cdot|x) = \delta_{\{h(x)\}}$ where h is assumed to be known

$$\widehat{\lambda}_{n}^{\bullet}(x) = h'(x)\Delta(x) \times \frac{\frac{1}{n} \sum_{i=0}^{n-1} K_{h_{n}}(Z_{i} - h(x))}{\frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1}_{\{Z_{i} \leq x\}} \mathbb{1}_{\{Z_{i+1} \geq h(x)\}}}$$

Standardization (1/2)

- General one-dimensional PDMP
- Invariant measures estimated by (non-recursive) kernel methods
- Asymptotics in the number of jumps observed
- Goal: central limit theorem with explicit variance

Krell (2016): $Q(\cdot|x) = \delta_{\{h(x)\}}$ where h is assumed to be known

$$\widehat{\lambda}_{n}^{\bullet}(x) = h'(x)\Delta(x) \times \frac{\frac{1}{n} \sum_{i=0}^{n-1} K_{h_{n}}(Z_{i} - h(x))}{\frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1}_{\{Z_{i} \leq x\}} \mathbb{1}_{\{Z_{i+1} \geq h(x)\}}}$$

Fujii (2013) and Krell and Schmisser (2021)

$$\widehat{\lambda}_{n}^{\bullet}(x) = \Delta(x) \times \frac{\frac{1}{n} \sum_{i=1}^{n} K_{h_{n}}(Z_{i}^{-} - x)}{\frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1}_{\{Z_{i} \le x < Z_{i+1}^{-}\}}}$$

Standardization (2/2)

Azaïs and Muller-Gueudin (2016)

$$\widehat{\lambda \circ \Phi}_n(t|x) = \frac{\frac{1}{n} \sum_{i=0}^{n-1} K_{h_n^*}(Z_i - x) K_{h_n^*}(S_{i+1} - t)}{\frac{1}{n} \sum_{i=0}^{n-1} K_{h_n^*}(Z_i - x) \mathbb{1}_{\{S_{i+1} > t\}}}$$

$$\mathring{\lambda}_{n}^{\bullet}(x) = \widehat{\lambda \circ \Phi}_{n}(\tau_{x}(\xi)|\xi) \quad \text{with} \quad \xi = \arg \max_{\mathcal{C}_{x}} \mu(\cdot)G(\tau_{x}(\cdot)|\cdot)$$

$$\widehat{\lambda}_n^{\bullet}(x) = \widehat{\lambda \circ \Phi}_n(\tau_x(\xi)|\xi) \quad \text{with} \quad \xi = \arg\max_{\mathcal{C}_x} \sum_{i=0}^{n-1} K_{h_n^{\bullet}}(Z_i - \cdot) \mathbb{1}_{\{S_{i+1} > \tau_x(\cdot)\}}$$

Baseline

- Almost sure convergence: $\hat{\lambda}_n^{\bullet}(x)$, $\hat{\lambda}_n^{\bullet}(x)$ and $\hat{\lambda}_n^{\bullet}(x)$ tend to $\lambda(x)$
- Central limit theorem for $\mathring{\lambda}_n^{\bullet}(x)$

$$\sqrt{nh_n^{\mathsf{s}}h_n^{\mathsf{t}}} \left[\mathring{\lambda}_n^{\bullet}(x) - \lambda(x) \right] \to \mathcal{N}(0, \sigma_{\bullet}^2(x))$$

where

$$\sigma_{\bullet}^{2}(x) = \frac{\tau^{4}\lambda(x)}{\max_{\xi \in C_{x}} \mu(\xi)G(\tau_{x}(\xi)|\xi)}$$

Baseline

- Almost sure convergence: $\hat{\lambda}_n^{\bullet}(x)$, $\hat{\lambda}_n^{\bullet}(x)$ and $\hat{\lambda}_n^{\bullet}(x)$ tend to $\lambda(x)$
- Central limit theorem for $\mathring{\lambda}_{n}^{\bullet}(x)$

$$\sqrt{nh_n^{\mathsf{s}}h_n^{\mathsf{t}}} \left[\mathring{\lambda}_n^{\bullet}(x) - \lambda(x) \right] \to \mathcal{N}(0, \sigma_{\bullet}^2(x))$$

where

$$\sigma_{\bullet}^{2}(x) = \frac{\tau^{4}\lambda(x)}{\max_{\xi \in C_{x}} \mu(\xi)G(\tau_{x}(\xi)|\xi)}$$

Main theorem: asymptotic normality

Under ergodicity and regularity conditions,

$$\sqrt{nh_n} \left[\hat{\lambda}_n^{\bullet}(x) - \lambda(x) \right] \rightarrow \mathcal{N}(0, \sigma_{\bullet}^2(x))$$

$$\sqrt{nh_n} \left[\hat{\lambda}_n^{\bullet}(x) - \lambda(x) \right] \rightarrow \mathcal{N}(0, \sigma_{\bullet}^2(x))$$

where

$$\sigma_{\clubsuit}^{2}(x) = \frac{\tau^{2}\lambda(x)^{2}h'(x)}{\mu^{-}(x)} \quad \text{and} \quad \sigma_{\spadesuit}^{2}(x) = \frac{\tau^{2}\lambda(x)^{2}}{\mu^{-}(x)}$$

$$\hat{\lambda}_n^{igoplus}(x)$$
 vs. $\hat{\lambda}_n^{igoplus}(x)$

- $\bullet \ \ \mathsf{Same} \ \ \mathsf{rate:} \ \sqrt{nh_n}$
- $\bullet \ \sigma^2_{\bullet}(x) = h'(x)\sigma^2_{\bullet}(x)$

$$\hat{\lambda}_n^{igoplus}(x)$$
 vs. $\hat{\lambda}_n^{igoplus}(x)$

- $\bullet \ \ \mathsf{Same \ rate:} \ \sqrt{nh_n}$
- $\bullet \ \sigma^2_{\bullet}(x) = h'(x)\sigma^2_{\bullet}(x)$

Examples

- Linear fragmentation: $h(x) = \kappa x$, $0 < \kappa < 1$
 - Then $\sigma^2_{\spadesuit}(x) = \kappa \sigma^2_{\spadesuit}(x)$ and $\hat{\lambda}^{\spadesuit}_n$ is uniformly better than $\hat{\lambda}^{\spadesuit}_n$

+ 10 / 22

$$\hat{\lambda}_n^{\bullet}(x)$$
 vs. $\hat{\lambda}_n^{\bullet}(x)$

- Same rate: $\sqrt{nh_n}$
- $\bullet \ \sigma^2_{\bullet}(x) = h'(x)\sigma^2_{\bullet}(x)$

Examples

- Linear fragmentation: $h(x) = \kappa x$, $0 < \kappa < 1$ Then $\sigma^2_{\bullet}(x) = \kappa \sigma^2_{\bullet}(x)$ and $\hat{\lambda}_n^{\bullet}$ is uniformly better than $\hat{\lambda}_n^{\bullet}$
- $h(x) = x/(1 + \exp(-x))$ is sublinear
 - $h'(1) < 1 \rightarrow \hat{\lambda}_n^{•}(1)$ is better than $\hat{\lambda}_n^{•}(1)$
 - $h'(2) > 1 \rightarrow \hat{\lambda}_n^{\bullet}(2)$ is better than $\hat{\lambda}_n^{\bullet}(2)$

Comparison with $\mathring{\lambda}_n^{\bullet}(x)$ is trickier

- Rate of $\mathring{\lambda}_n^{\bullet}(x)$: $\sqrt{nh_n^{\mathsf{s}}h_n^{\mathsf{t}}}$
- Rate of $\hat{\lambda}_n^{\bullet}(x)$ and $\hat{\lambda}_n^{\bullet}(x)$: $\sqrt{nh_n}$

Extremal cases

- $h_n = h_n^s$: $\mathring{\lambda}_n^{\bullet}$ is asymptotically disqualified
- $h_n = h_n^s h_n^t$: direct comparison of variances is valid

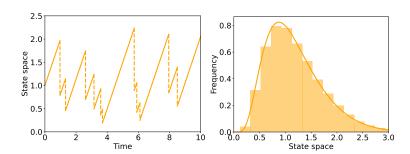
In practice, bandwidths are chosen from the available data

→ 11 / 22

Growth-fragmentation model

$$\begin{cases} \lambda(x) &= x \\ \Phi(t|x) &= x+t \\ Q(\mathrm{d}y|x) &= \delta_{\{\kappa x\}}(\mathrm{d}y) \end{cases}$$

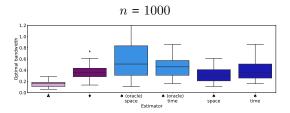
$$\mu^{\text{cr}}(x) = \frac{\sqrt{2/\pi}}{\prod_{n=0}^{+\infty} (1 - \kappa^{2n+1})} \sum_{n=0}^{+\infty} \frac{\kappa^{-2n}}{\prod_{k=1}^{n} (1 - \kappa^{-2k})} \exp\left(-\kappa^{-2n} x^2/2\right)$$

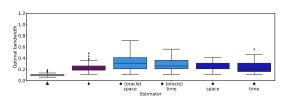


→ 12 / 22

Bandwidth selection

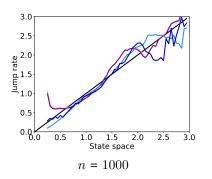
$$\boldsymbol{h}^{\star} = \operatorname*{arg\,min}_{\boldsymbol{h} \in \mathbb{R}_{+}^{*}} \|\boldsymbol{\lambda} - \widehat{\boldsymbol{\lambda}}\|_{\mathbb{L}^{2}_{[0.5,2.5]}}$$

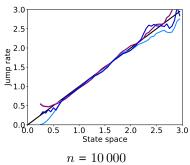




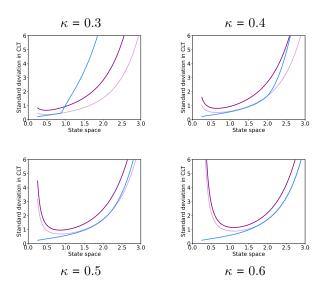
$$n = 10000$$

Comparison from one sample (not robust)





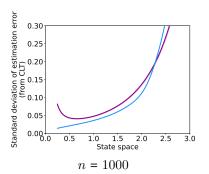
Variance from the central limit theorem (not normalized)

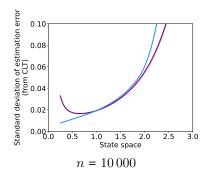


→ 15 / 22

Expected asymptotic variance (normalized)

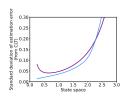
$$-\kappa = 0.4$$
 —

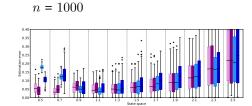




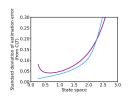
- 16 / 22

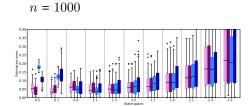
Expected asymptotic variance vs. estimation error

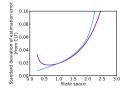


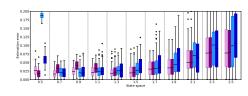


Expected asymptotic variance vs. estimation error









$$n = 10000$$

Real data analysis (1/4)

— Data description —

Tanouchi et al. (2017): cell growth and division data (E. coli)

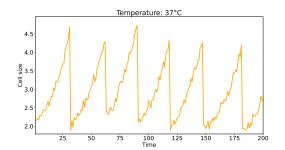
	Temperature		Lineages	Measurements	Division events
SCIENTIFIC DATA	25°C	Total:	65	307 999	4 485
		Average:	_	4738.44	68.67
	27°C	Total:	54	202 086	3 726
		Average:	_	3742.33	69
	37°C	Total:	160	364 920	11 040
	31 C	Average:	_	2280.75	69

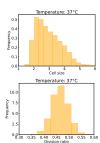
Real data analysis (1/4)

— Data description —

Tanouchi et al. (2017): cell growth and division data (E. coli)

	Temperature		Lineages	Measurements	Division events
SCIENTIFIC DATA -	25°C	Total:	65	307 999	4 485
		Average:	_	4738.44	68.67
	27°C	Total:	54	202 086	3 726
		Average:	_	3742.33	69
	37°C	Total:	160	364 920	11 040
		Average:	_	2280.75	69



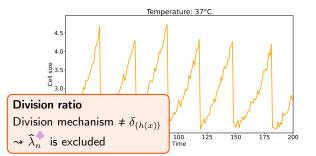


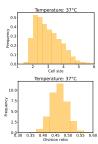
Real data analysis (1/4)

— Data description —

Tanouchi et al. (2017): cell growth and division data (E. coli)

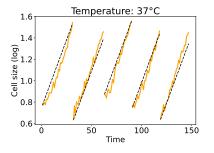
	Temperature		Lineages	Measurements	Division events
SCIENTIFIC DATA	25°C	Total:	65	307 999	4 485
		Average:	_	4738.44	68.67
	27°C	Total:	54	202 086	3 726
		Average:	_	3742.33	69
	37°C	Total:	160	364 920	11 040
	31 C	Average:		2280.75	60

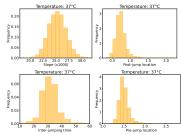




Real data analysis (2/4)

— Modeling —

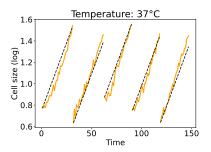


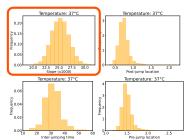


- Cell growth looks linear in log scale
- Slope estimated for each of the cells

Real data analysis (2/4)

— Modeling —





- Cell growth looks linear in log scale
- Slope estimated for each of the cells → pretty sharp distribution
- Common slope under each temperature condition: $\Phi(t|x) = x + \theta t$

Temperature
$$\begin{array}{c|cccc} 25^{\circ}\text{C} & 27^{\circ}\text{C} & 37^{\circ}\text{C} \\ \hline \theta & 0.012 & 0.014 & 0.025 \end{array}$$

Real data analysis (3/4)

— Estimation procedures —

- $\mathring{\lambda}_n^{\bullet}$ can not be evaluated
- Argument selection simplified for $\widehat{\lambda}_n^{ullet}$: $\widehat{\lambda}_n^{ullet}(x) = \widehat{\lambda \circ \Phi}_n(\tau|x \theta\tau)$

Bandwidth selection

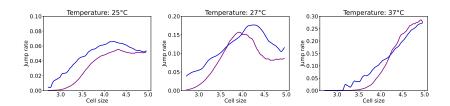
Temperature	Sample size	+	♠ (space)	♠ (time)
25°C	4 485	0.05	0.06	4
27°C	3 726	0.07	0.08	8
37°C	11 040	0.02	0.03	3

20 / 22

Real data analysis (4/4)

— Estimation results —

$$\widehat{\lambda}_n^{\bullet}(\exp(x))$$
 vs. $\widehat{\lambda}_n^{\bullet}(\exp(x))$



• Asymptotic variances can not be ordered

- Asymptotic variances can not be ordered
- $\mathring{\lambda}_n^{\bullet}$ and $\widehat{\lambda}_n^{\bullet}$ are the most affected by bias
- $\hat{\lambda}_n^{\bullet}$ is more general than $\hat{\lambda}_n^{\bullet}$ and achieves pretty similar results

- Asymptotic variances can not be ordered
- $\mathring{\lambda}_n^{\bullet}$ and $\widehat{\lambda}_n^{\bullet}$ are the most affected by bias
- $\hat{\lambda}_n^{igoplus}$ is more general than $\hat{\lambda}_n^{igoplus}$ and achieves pretty similar results
- Bandwidth parameters of $\mathring{\lambda}_n^{\bullet}$ and $\widehat{\lambda}_n^{\bullet}$ are difficult to tune

- Asymptotic variances can not be ordered
- \bullet $\mathring{\lambda}_n^{ullet}$ and $\widehat{\lambda}_n^{ullet}$ are the most affected by bias
- $\hat{\lambda}_n^{ullet}$ is more general than $\hat{\lambda}_n^{ullet}$ and achieves pretty similar results
- Bandwidth parameters of $\mathring{\lambda}_n^{\bullet}$ and $\widehat{\lambda}_n^{\bullet}$ are difficult to tune
- $\rightarrow \hat{\lambda}_n^{\bullet}$ from Fujii (2013) and Krell and Schmisser (2021) tends to be the best estimator of λ in dimension 1!

- Asymptotic variances can not be ordered
- $\mathring{\lambda}_n^{\bullet}$ and $\widehat{\lambda}_n^{\bullet}$ are the most affected by bias
- $\hat{\lambda}_n^{igoplus}$ is more general than $\hat{\lambda}_n^{igoplus}$ and achieves pretty similar results
- Bandwidth parameters of $\mathring{\lambda}_n^{ullet}$ and $\widehat{\lambda}_n^{ullet}$ are difficult to tune
- $\rightarrow \hat{\lambda}_n^{\bullet}$ from Fujii (2013) and Krell and Schmisser (2021) tends to be the best estimator of λ in dimension 1!

Azaïs and Denis (2025)

Asymptotic analysis and practical evaluation of jump rate estimators in piecewise-deterministic Markov processes

Thank you for your attention!