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Semi-Markov ?

Hidden Markov Model : HMM

Yo Y1 Y>

® Observations Yp, Y1, Y2,..., indexed in discrete
time
® Discrete and hidden latent states Wy, Wq, W5, . ..

® Probability of jumping from one latent state to

another at each time period 0 @

Hidden Semi Markov Model : HSMM

® |n an HMM, we have sojourn times in a state that follow a geometric distribution

® Not always realistic, e.g., when you have the flu, you often do not recover in the first few days

® The time spent in a state can follow another distribution : semi-Markov
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Weeds, from Hanna Bacave's work [1]

® \Weeds are observed
® Seeds in the ground are hidden

® Retroaction of weeds to seeds




Mildew on my mother's potato patches

Damp and cold weather induces mildew
Treatment has a preventive action
Heatwaves cure mildew

[ ]
]
L]
® After some time, mildew kills potato plants and bligts the tubers
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What now ?

What's in common ?

® \We can model the situation with a H(S)MM. That's a fiction of course, but still, not a delirious one

® Presence (or not) of seeds in the ground, observed plants
® Potato plant is either healthy, sick, or dead, mildew is directly observed

® There are explanatory variables that act upon the latent state
® The production of seeds (who also happens to be the observed variable)
® The weather, the treatment

® Those variables change at each period of time

.

What do we do from here?

® Do what we usually do with H(S)MMs with a little more spice

® Classifying the latent state
® Clustering the observations (not exactly the same thing as classifying)
® Predicting the outcome variable, the latent state, in future times

® Evaluate the impact of those explanatory variables upon the changes latent state

V.
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Linking Covariates to Latent State Changes

Reformulating the Model to Incorporate Covariate Effects
® Problem : how can we account for the effect of variables during the stay in a given state ?

® Solution : reformulate as a Markov model over the pair “state” x “time already spent in the state”
® |dea stolen from Hanna Bacave [1] : assign a probability to the next latent state...
® for each current latent state, ...
® for each duration spent in that current latent state,
® and for each possible value of the explanatory variables

® (The time spent is automatically updated)
Important idea : the global behavior emerges from a collection of local behaviors )

Generalizing the Formulation
® Problem : Hanna works with a binary variable

® The weed produces seeds...
® The weed does not produce seeds...

... | want to be able to work with other formats of variables as well
® Solution : to create an (interpretable) link with explanatory variables in a general format, use categorical regression

® Softmax for now
® Why not multi-level, if needed in the future?
® Why not hybrid methods (Peyhardi [2]), if needed in the future?
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A Picture Is Worth a Thousand Words

® X, — explanatory variables at time t
® Y, — emissions at time t

R il N -
/ / ® Squares represent observations

® Circles Q represent parameters to be
@ inferred by the model
® Greek letters are high-level parameters

\ ® © — transition parameters
® [ — emission parameters
WO\ @\’G\&\ ® W — initialization parameters
k k ® |atin letters are low-level parameters

® W, — latent state at time t
® U; — time already spent in the state at time
t (if just entered, U; = 1)
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Time Basis Functions for Semi-Markov Model

A quote from Havard Rue, around June 2023

Sébastien, you are trying to model every single observation. This is doing statistics like in the 1970’s. In modern
statistics, first you make a structure, then the observations land on top of the structure.

.

Major Potential Problems of "Bunch Of Softmax”

® Overfitting Idea : impose a low-rank structure on the
e Algorithmic issues crc:efficiznfs of multinomial regressions to lighten
- the mode
® Interpretability )

Introducing Structure and Parsimony

® First step : build a directed graph — for a given state, indicate where we are allowed to go

® Second step : zoom in on each node — choose time basis functions to describe the evolution of transition
probabilities as a function of time spent in the state

® Third step : zoom in on each arrow — combine the variables and basis functions for each legal output state. We are
not required to make all combinations

.
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An Example : Seasonal lliness, Day by Day. An SIRS model on one individual

Model Elements

Latent states W;

® Susceptible state.

® |nfected state.

® Recovered, immunized state.
Observations :

® Explanatory variable X; : average temperature

® Emitted variable Y; :

Step 1 : Build the Transition Graph

individual's temperature

Step 2 : Zoom in on a Node

® S : Markov model. Time basis function : (1)

® | : Semi-Markov model, with constant transition
probabilities after U = 14 days. Time basis
functions :
®(1,1,1,1,1,1,1,1,1,1,1,1,1,1)
® (0,0,0,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1)
® R : Semi-Markov model, with constant transition
probabilities after U = 6 months. Time basis
functions :
® (1,1 + 6 months — 1,1)
® (0,0 < 80d — 0,0, 0.01,0.02 + 100d — 0.99, 1)

Step 3 : Zoom in on an Edge

® S —]:(1)x (Intercept & temperature)
® | — R : 2 functions X Intercept

® R — S : 2 functions X Intercept
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| — R : Time Basis Functions

They are the

Temporal basis functions

“alphabet” who describes how the transition probabilities evolve along the time spent in the state
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| — R : Transition Probabilities, Different Scenarios

Each color corresponds to certain values of the parameters
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I — R : Sojourn Time Distributions, Different Scenarios

A global behavior for the sojourn times arises from the local behavior of the transition probabilities

Distribution of sojourn times
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R — S : Time Basis Functions
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Transition Probabilities, Different Scenarios
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S — | : Time Basis Functions
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S — | : Transition Probabilities, Different Scenarios

Here the x-axis is the temperature! The tbf is just (1)
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R — S : Winter Temperature Conditions
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R — S : Sojourn Time Distributions, Different Scenarios in Previously Simulated Winter

Temperature Conditions

Distribution of sojourn times
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Simulation of a State Series for 2 Individuals

A global behavior emerges from local transition probabilities
One individual gets contaminated less easily and keeps immunity longer, guess who's who
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Some reasons to choose Bayesian inference for this model (aside of unwholesome interest
towards over-complicated MCMC schemes)

® Frequentist inference has the interest to be generally lighter and faster (understatement)

® |f objective is fast prediction / decoding / filtering / smoothing this is great

Frequentist approach (seen by a compulsive Bayesian)

1. Estimate the Maximum Likelihood Estimator arg max Py, . v, | ew,r(Y1,---,y7 | 0,9,7)
0,9,

2. Do stuff like smoothing, Viterbi with the MLE

Bayesian approach

1. Get the A Posteriori * distribution *
Powr | vi,,vr (05,7 |y, sy7) X Py v | @ r(Va, - y7 | 0,9,7) Pow,r(0,%,7)

likelihood prior
2. Do stuff like smoothing not with just one estimate of +, 6, but with all the posterior distribution
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Some reasons to go to the dark side

What if we do want to keep the incertitude ?

® |nterpretation of parameters (see on the right)

® Inject some undue precision in a follow-up modelization

What if we have some extra information to feed the model ?

® We can know that some transitions never happen, e.g. S - R, R — I, etc
® \We can have an idea of the emission parameters associated with a latent state, e.g. a S individual will have fever

® This helps with label permutation
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Challenging Points for Interpretation

How to Interpret the Model Parameters ?

® How to retrieve simple Softmax parameters from time basis functions? — with the induced low-rank structure
® Another problem : it is not straightforward to infer probability changes directly from Softmax parameters because it
also depends on x
® Try with different plausible configurations of x and calculate P(Wii1|Ws, Ug, xe11) and especially OP(Wip1|We, U, xe11)/Ox

® Use parsimony
® Simpler when the probability of staying in the same state is high due to the exponential interpretation of Softmax coefficients

How to Move from Local to Global ?

Once the problems inherent to any categorical model are overcome, we can have an idea of how P(Wgi1|Ws, Xt, Us, ©)
behaves. But what global behavior emerges from the aggregation of local behaviors ?
® Sojourn time?
® Which exit state?
There is no simple solution, but we can improvise
® When the model does not depend on covariates but only on the intercept we can calculate global behaviors such as
sojourn times ( example : | — R and R — S)

® Otherwise, test with different reasonable configurations of the variables (example : S — /)

.
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Computational Aspects

One Ingredient

® Forward algorithm that directly gives P(Y|©,T, V)

® Recurrence relation with sums and products

® Product rule in differentiation — gradient and Hessian calculated by recurrence
® \We eliminate latent states — we are not encumbered as in EM or Gibbs

® Exponential cost in the number of coupled latent state chains — we keep independent chains

Several possible delicious Bayesian recipes
® Langevin algorithm on Riemannian manifold ? (Hessian-informed by definition, little assumption concerning the
posterior)
® Hybrid Monte-Carlo ? (Possibly informed using the Hessian at the mode, little assumption concerning the posterior)
® Metropolis-within-Gibbs ? (Possibly informed using the Hessian at the mode, little assumption concerning the posterior)

® Deterministic exploration in the style of INLA? (Informed using the Hessian at the mode by definition, assuming
lumpoidal posterior)

® Self-normalized Importance Sampling ? (Not realistic without using the Hessian at the mode, assuming lumpoidal
posterior)

Balance to find between the striking power of the Hessian and its cost
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Experimental results

None
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That's all folks!

Questions ?

30/31



References

@ Hanna Bacave.
Extension des modéles de (semi-) Markov cachés et algorithmes pour estimer la dynamique de (méta) populations

partiellement observables.
PhD thesis, Université Paul Sabatier (Toulouse), 2024.

@ Jean Peyhardi, Catherine Trottier, and Yann Guédon.
A new specification of generalized linear models for categorical responses.
Biometrika, 102(4) :889-906, 2015.

31/31



	Introduction + motivating examples
	Model formulation
	Inference

