Bayesian formulation and implementation for a non-stationary semi-Markov model with covariates (Work in progress)

Sébastien Coube ¹

INRAE, Toulouse University

^{1.} Special mention for Nathalie Peyrard whose critical yet benevolent feedback is invaluable

 $1. \ \, \text{Introduction} \, + \, \text{motivating examples}$

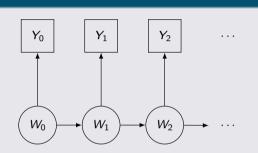
2. Model formulation

3. Inference

Semi-Markov?

Hidden Markov Model: HMM

- Observations Y_0, Y_1, Y_2, \ldots , indexed in discrete time
- Discrete and hidden latent states W_0, W_1, W_2, \dots
- Probability of jumping from one latent state to another at each time period

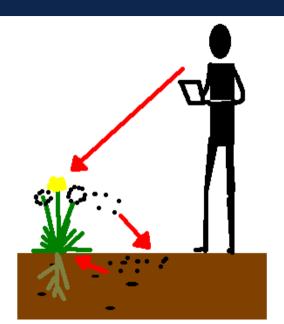


Hidden Semi Markov Model: HSMM

- In an HMM, we have sojourn times in a state that follow a geometric distribution
- Not always realistic, e.g., when you have the flu, you often do not recover in the first few days
- The time spent in a state can follow another distribution : semi-Markov

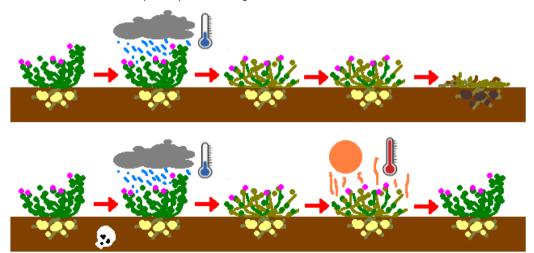
Weeds, from Hanna Bacave's work [1]

- Weeds are observed
- Seeds in the ground are hidden
- Retroaction of weeds to seeds



Mildew on my mother's potato patches

- Damp and cold weather induces mildew
- Treatment has a preventive action
- Heatwaves cure mildew
- After some time, mildew kills potato plants and bligts the tubers



What now?

What's in common?

- We can model the situation with a H(S)MM. That's a fiction of course, but still, not a delirious one
 - Presence (or not) of seeds in the ground, observed plants
- Potato plant is either healthy, sick, or dead, mildew is directly observed
- There are explanatory variables that act upon the latent state
 - The production of seeds (who also happens to be the observed variable)
 - The weather, the treatment
- Those variables change at each period of time

What do we do from here?

- Do what we usually do with H(S)MMs with a little more spice
 - Classifying the latent state
 - Clustering the observations (not exactly the same thing as classifying)
 - Predicting the outcome variable, the latent state, in future times
- Evaluate the impact of those explanatory variables upon the changes latent state

1. Introduction + motivating examples

2. Model formulation

3. Inference

Linking Covariates to Latent State Changes

Reformulating the Model to Incorporate Covariate Effects

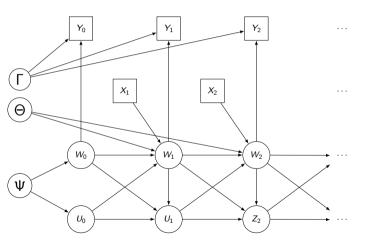
- Problem : how can we account for the effect of variables during the stay in a given state?
- Solution : reformulate as a Markov model over the pair "state" × "time already spent in the state"
- Idea stolen from Hanna Bacave [1]: assign a probability to the next latent state...
 - for each current latent state, ...
 - for each duration spent in that current latent state, ...
 - and for each possible value of the explanatory variables
- (The time spent is automatically updated)

Important idea : the global behavior emerges from a collection of local behaviors

Generalizing the Formulation

- Problem: Hanna works with a binary variable
 - The weed produces seeds...
 - The weed does not produce seeds...
 - ... I want to be able to work with other formats of variables as well
- Solution : to create an (interpretable) link with explanatory variables in a general format, use categorical regression
 - Softmax for now
 - Why not multi-level, if needed in the future?
 - Why not hybrid methods (Peyhardi [2]), if needed in the future?

A Picture Is Worth a Thousand Words



- Squares represent observations
 - $X_t o ext{explanatory variables at time } t$
 - $Y_t \rightarrow$ emissions at time t
- Circles represent parameters to be inferred by the model
- Greek letters are high-level parameters
 - ullet $\Theta
 ightarrow$ transition parameters
 - $\Gamma \rightarrow$ emission parameters
 - $\Psi \rightarrow$ initialization parameters
- Latin letters are low-level parameters
 - $W_t \rightarrow$ latent state at time t
 - $U_t \rightarrow$ time already spent in the state at time t (if just entered, $U_t = 1$)

Time Basis Functions for Semi-Markov Model

A quote from Håvard Rue, around June 2023

Sébastien, you are trying to model every single observation. This is doing statistics like in the 1970's. In modern statistics, first you make a structure, then the observations land on top of the structure.

Major Potential Problems of "Bunch Of Softmax"

- Overfitting
- Algorithmic issues
- Interpretability

Idea : impose a **low-rank structure** on the coefficients of multinomial regressions to lighten the model

Introducing Structure and Parsimony

- ullet First step : build a **directed graph** o for a given state, indicate where we are allowed to go
- Second step: zoom in on each node → choose time basis functions to describe the evolution of transition probabilities as a function of time spent in the state
- Third step: zoom in on each arrow → combine the variables and basis functions for each legal output state. We are not required to make all combinations

An Example: Seasonal Illness, Day by Day. An SIRS model on one individual

Model Elements

Latent states W+

- Susceptible state.
- Infected state
- Recovered, immunized state.

Observations:

- Explanatory variable X_t : average temperature
- Emitted variable Y_t : individual's temperature

Step 1: Build the Transition Graph

Step 2: Zoom in on a Node

- S: Markov model. Time basis function: (1)
- 1 : Semi-Markov model, with constant transition probabilities after U = 14 days. Time basis functions .
 - (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
 - (0, 0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)
- R : Semi-Markov model, with constant transition probabilities after U=6 months. Time basis functions .

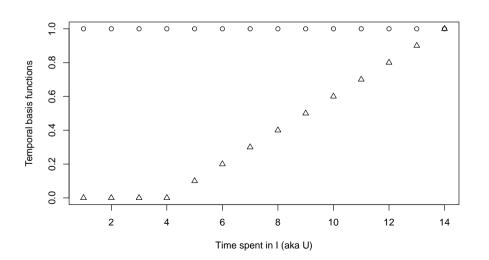
 - $(1, 1 \leftarrow 6 \text{ months} \rightarrow 1, 1)$ $(0, 0 \leftarrow 80d \rightarrow 0, 0, 0.01, 0.02 \leftarrow 100d \rightarrow 0.99, 1)$

Step 3: Zoom in on an Edge

- $S \rightarrow I : (1) \times (Intercept \& temperature)$
- $I \rightarrow R$: 2 functions × Intercept
- $R \rightarrow S$: 2 functions × Intercept

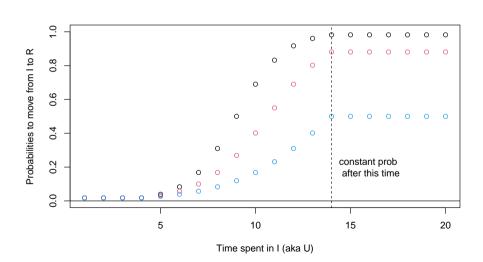
$I \rightarrow R$: Time Basis Functions

They are the "alphabet" who describes how the transition probabilities evolve along the time spent in the state "1"



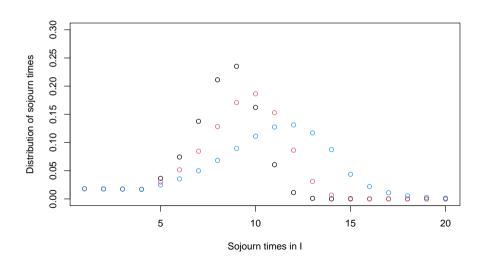
$I \rightarrow R$: Transition Probabilities, Different Scenarios

Each color corresponds to certain values of the parameters

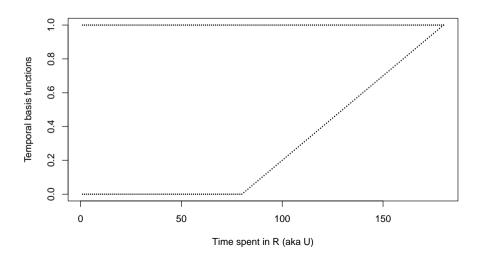


$I \rightarrow R$: Sojourn Time Distributions, Different Scenarios

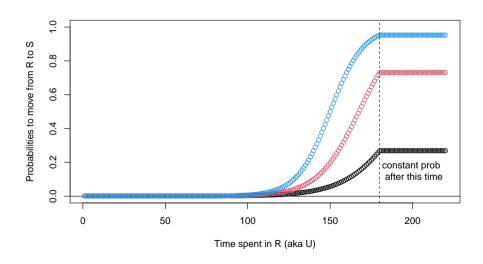
A global behavior for the sojourn times arises from the local behavior of the transition probabilities



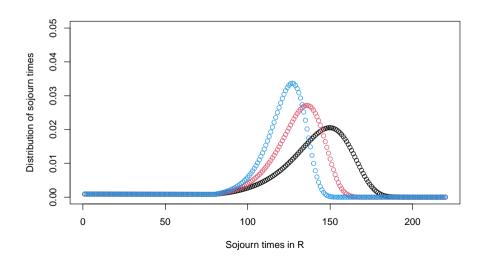
$R \rightarrow S$: Time Basis Functions



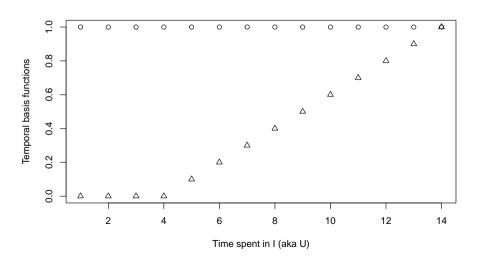
$R \rightarrow S$: Transition Probabilities, Different Scenarios



$R \rightarrow S$: Sojourn Time Distributions, Different Scenarios

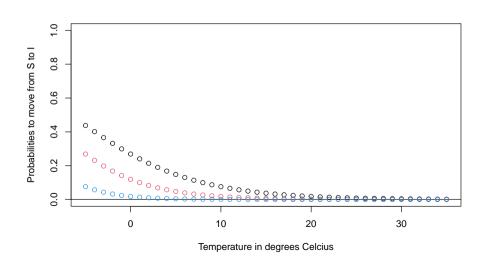


$S \rightarrow I$: Time Basis Functions

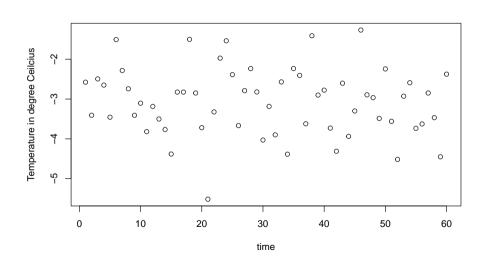


$S \rightarrow I$: Transition Probabilities, Different Scenarios

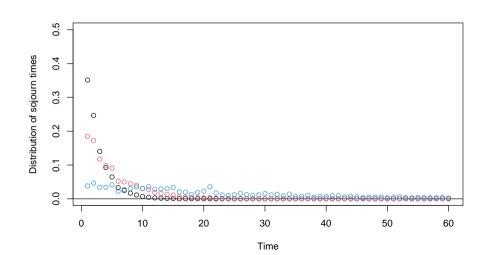
Here the x-axis is the temperature! The tbf is just (1)



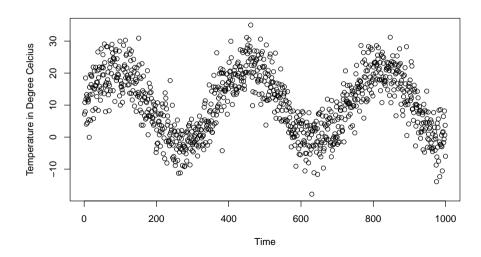
$R \rightarrow S$: Winter Temperature Conditions



$R \to S$: Sojourn Time Distributions, Different Scenarios in Previously Simulated Winter Temperature Conditions

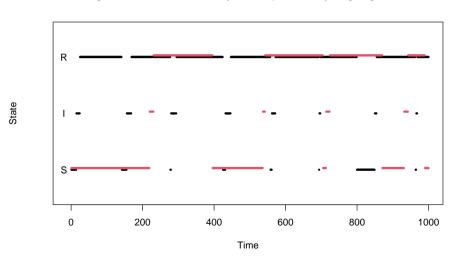


Simulation of a Temperature Series



Simulation of a State Series for 2 Individuals

A **global** behavior emerges from **local** transition probabilities One individual gets contaminated less easily and keeps immunity longer, guess who's who



 $1. \ \, \text{Introduction} \, + \, \text{motivating examples}$

2. Model formulation

3. Inference

Some reasons to choose Bayesian inference for this model (aside of unwholesome interest towards over-complicated MCMC schemes)

Disclaimer

- Frequentist inference has the interest to be generally lighter and faster (understatement)
- If objective is fast prediction / decoding / filtering / smoothing this is great

Frequentist approach (seen by a compulsive Bayesian)

- 1. Estimate the Maximum Likelihood Estimator $\underset{\theta,\psi,\gamma}{arg} P_{Y_1,...,Y_T \mid \Theta,\Psi,\Gamma}(y_1,...,y_T \mid \theta,\psi,\gamma)$
- 2. Do stuff like smoothing. Viterbi with the MLE

Bavesian approach

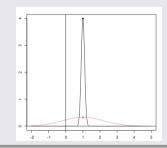
1. Get the A Posteriori * distribution *

2. Do stuff like smoothing not with just one estimate of γ, θ, ψ but with all the posterior distribution

Some reasons to go to the dark side

What if we do want to keep the incertitude?

- Interpretation of parameters (see on the right)
- Inject some undue precision in a follow-up modelization



What if we have some extra information to feed the model?

- We can know that some transitions never happen, e.g. $S \to R$, $R \to I$, etc
- We can have an idea of the emission parameters associated with a latent state, e.g. a S individual will have fever
- This helps with label permutation

Challenging Points for Interpretation

How to Interpret the Model Parameters?

- How to retrieve simple Softmax parameters from time basis functions? → with the induced low-rank structure
- Another problem: it is not straightforward to infer probability changes directly from Softmax parameters because it
 also depends on x
 - Try with different plausible configurations of x and calculate $P(W_{t+1}|W_t,U_t,x_{t+1})$ and especially $\partial P(W_{t+1}|W_t,U_t,x_{t+1})/\partial x$
 - Use parsimony
 - Simpler when the probability of staying in the same state is high due to the exponential interpretation of Softmax coefficients

How to Move from Local to Global?

Once the problems inherent to any categorical model are overcome, we can have an idea of how $P(W_{t+1}|W_t, X_t, U_t, \Theta)$ behaves. But what global behavior emerges from the aggregation of local behaviors?

- Sojourn time?
- Which exit state?

There is no simple solution, but we can improvise

- When the model does not depend on covariates but only on the intercept we can calculate global behaviors such as sojourn times (example : $I \to R$ and $R \to S$)
- ullet Otherwise, test with different reasonable configurations of the variables (example : S
 ightarrow I)

Computational Aspects

One Ingredient

- Forward algorithm that directly gives $P(Y|\Theta,\Gamma,\Psi)$
- Recurrence relation with sums and products
- Product rule in differentiation → gradient and Hessian calculated by recurrence
- We eliminate latent states \rightarrow we are not encumbered as in EM or Gibbs
- Exponential cost in the number of coupled latent state chains → we keep independent chains

Several possible delicious Bayesian recipes

- Langevin algorithm on Riemannian manifold? (Hessian-informed by definition, little assumption concerning the posterior)
- Hybrid Monte-Carlo? (Possibly informed using the Hessian at the mode, little assumption concerning the posterior)
- Metropolis-within-Gibbs? (Possibly informed using the Hessian at the mode, little assumption concerning the posterior)
- Deterministic exploration in the style of *INLA*? (Informed using the Hessian at the mode by definition, assuming lumpoidal posterior)
- Self-normalized Importance Sampling? (Not realistic without using the Hessian at the mode, assuming lumpoidal posterior)

Balance to find between the striking power of the Hessian and its cost

Experimental results

None

That's all folks!

Questions?

References

Hanna Bacave.

Extension des modèles de (semi-) Markov cachés et algorithmes pour estimer la dynamique de (méta) populations partiellement observables.

PhD thesis, Université Paul Sabatier (Toulouse), 2024.

Jean Peyhardi, Catherine Trottier, and Yann Guédon.

A new specification of generalized linear models for categorical responses.

Biometrika, 102(4):889-906, 2015.