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Semi-Markov ?

Hidden Markov Model : HMM

• Observations Y0,Y1,Y2, . . ., indexed in discrete
time

• Discrete and hidden latent states W0,W1,W2, . . .

• Probability of jumping from one latent state to
another at each time period

Y0 Y1 Y2 · · ·

W0 W1 W2 · · ·

Hidden Semi Markov Model : HSMM
• In an HMM, we have sojourn times in a state that follow a geometric distribution

• Not always realistic, e.g., when you have the flu, you often do not recover in the first few days

• The time spent in a state can follow another distribution : semi-Markov
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Weeds, from Hanna Bacave’s work [1]

• Weeds are observed

• Seeds in the ground are hidden

• Retroaction of weeds to seeds
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Mildew on my mother’s potato patches

• Damp and cold weather induces mildew
• Treatment has a preventive action
• Heatwaves cure mildew
• After some time, mildew kills potato plants and bligts the tubers
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What now ?

What’s in common ?

• We can model the situation with a H(S)MM. That’s a fiction of course, but still, not a delirious one
• Presence (or not) of seeds in the ground, observed plants
• Potato plant is either healthy, sick, or dead, mildew is directly observed

• There are explanatory variables that act upon the latent state
• The production of seeds (who also happens to be the observed variable)
• The weather, the treatment

• Those variables change at each period of time

What do we do from here ?

• Do what we usually do with H(S)MMs with a little more spice
• Classifying the latent state
• Clustering the observations (not exactly the same thing as classifying)
• Predicting the outcome variable, the latent state, in future times

• Evaluate the impact of those explanatory variables upon the changes latent state
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Linking Covariates to Latent State Changes

Reformulating the Model to Incorporate Covariate Effects

• Problem : how can we account for the effect of variables during the stay in a given state ?

• Solution : reformulate as a Markov model over the pair “state” × “time already spent in the state”
• Idea stolen from Hanna Bacave [1] : assign a probability to the next latent state...

• for each current latent state, ...
• for each duration spent in that current latent state, ...
• and for each possible value of the explanatory variables

• (The time spent is automatically updated)

Important idea : the global behavior emerges from a collection of local behaviors

Generalizing the Formulation

• Problem : Hanna works with a binary variable
• The weed produces seeds...
• The weed does not produce seeds...

... I want to be able to work with other formats of variables as well
• Solution : to create an (interpretable) link with explanatory variables in a general format, use categorical regression

• Softmax for now
• Why not multi-level, if needed in the future ?
• Why not hybrid methods (Peyhardi [2]), if needed in the future ?
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A Picture Is Worth a Thousand Words

Y0 Y1 Y2 · · ·

X1 X2 · · ·

W0 W1 W2 · · ·

U0 U1 Z2 · · ·

Ψ

Θ

Γ

• Squares Θ represent observations
• Xt → explanatory variables at time t
• Yt → emissions at time t

• Circles
Θ

represent parameters to be
inferred by the model

• Greek letters are high-level parameters
• Θ→ transition parameters
• Γ→ emission parameters
• Ψ→ initialization parameters

• Latin letters are low-level parameters
• Wt → latent state at time t
• Ut → time already spent in the state at time

t (if just entered, Ut = 1)
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Time Basis Functions for Semi-Markov Model

A quote from Håvard Rue, around June 2023

Sébastien, you are trying to model every single observation. This is doing statistics like in the 1970’s. In modern
statistics, first you make a structure, then the observations land on top of the structure.

Major Potential Problems of ”Bunch Of Softmax”

• Overfitting

• Algorithmic issues

• Interpretability

Idea : impose a low-rank structure on the
coefficients of multinomial regressions to lighten
the model

Introducing Structure and Parsimony

• First step : build a directed graph → for a given state, indicate where we are allowed to go

• Second step : zoom in on each node → choose time basis functions to describe the evolution of transition
probabilities as a function of time spent in the state

• Third step : zoom in on each arrow → combine the variables and basis functions for each legal output state. We are
not required to make all combinations
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An Example : Seasonal Illness, Day by Day. An SIRS model on one individual

Model Elements

Latent states Wt

• Susceptible state.

• Infected state.

• Recovered, immunized state.

Observations :

• Explanatory variable Xt : average temperature

• Emitted variable Yt : individual’s temperature

Step 1 : Build the Transition Graph

S I

R

Step 2 : Zoom in on a Node

• S : Markov model. Time basis function : (1)
• I : Semi-Markov model, with constant transition

probabilities after U = 14 days. Time basis
functions :
• (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
• (0, 0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)

• R : Semi-Markov model, with constant transition
probabilities after U = 6 months. Time basis
functions :
• (1, 1← 6 months→ 1, 1)
• (0, 0← 80d→ 0, 0, 0.01, 0.02← 100d→ 0.99, 1)

Step 3 : Zoom in on an Edge

• S → I : (1)× (Intercept & temperature)

• I → R : 2 functions × Intercept

• R → S : 2 functions × Intercept
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I → R : Time Basis Functions

They are the “alphabet” who describes how the transition probabilities evolve along the time spent in the state “I”
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I → R : Transition Probabilities, Different Scenarios

Each color corresponds to certain values of the parameters
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I → R : Sojourn Time Distributions, Different Scenarios

A global behavior for the sojourn times arises from the local behavior of the transition probabilities
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R → S : Time Basis Functions
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R → S : Transition Probabilities, Different Scenarios
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R → S : Sojourn Time Distributions, Different Scenarios
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S → I : Time Basis Functions
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S → I : Transition Probabilities, Different Scenarios

Here the x-axis is the temperature ! The tbf is just (1)
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R → S : Winter Temperature Conditions
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R → S : Sojourn Time Distributions, Different Scenarios in Previously Simulated Winter
Temperature Conditions
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Simulation of a Temperature Series
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Simulation of a State Series for 2 Individuals

A global behavior emerges from local transition probabilities
One individual gets contaminated less easily and keeps immunity longer, guess who’s who
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Some reasons to choose Bayesian inference for this model (aside of unwholesome interest
towards over-complicated MCMC schemes)

Disclaimer

• Frequentist inference has the interest to be generally lighter and faster (understatement)

• If objective is fast prediction / decoding / filtering / smoothing this is great

Frequentist approach (seen by a compulsive Bayesian)

1. Estimate the Maximum Likelihood Estimator arg max
θ,ψ,γ

PY1,...,YT | Θ,Ψ,Γ(y1, . . . , yT | θ, ψ, γ)

2. Do stuff like smoothing, Viterbi with the MLE

Bayesian approach

1. Get the A Posteriori * distribution *
PΘ,Ψ,Γ | Y1,...,YT

(θ, ψ, γ | y1, . . . , yT ) ∝ PY1,...,YT | Θ,Ψ,Γ(y1, . . . , yT | θ, ψ, γ)︸ ︷︷ ︸
likelihood

PΘ,Ψ,Γ(θ, ψ, γ)︸ ︷︷ ︸
prior

2. Do stuff like smoothing not with just one estimate of γ, θ, ψ but with all the posterior distribution
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Some reasons to go to the dark side

What if we do want to keep the incertitude ?

• Interpretation of parameters (see on the right)

• Inject some undue precision in a follow-up modelization

What if we have some extra information to feed the model ?
• We can know that some transitions never happen, e.g. S → R, R → I , etc

• We can have an idea of the emission parameters associated with a latent state, e.g. a S individual will have fever

• This helps with label permutation
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Challenging Points for Interpretation

How to Interpret the Model Parameters ?

• How to retrieve simple Softmax parameters from time basis functions ? → with the induced low-rank structure
• Another problem : it is not straightforward to infer probability changes directly from Softmax parameters because it

also depends on x
• Try with different plausible configurations of x and calculate P(Wt+1|Wt ,Ut , xt+1) and especially ∂P(Wt+1|Wt ,Ut , xt+1)/∂x
• Use parsimony
• Simpler when the probability of staying in the same state is high due to the exponential interpretation of Softmax coefficients

How to Move from Local to Global ?

Once the problems inherent to any categorical model are overcome, we can have an idea of how P(Wt+1|Wt ,Xt ,Ut ,Θ)
behaves. But what global behavior emerges from the aggregation of local behaviors ?

• Sojourn time ?

• Which exit state ?

There is no simple solution, but we can improvise

• When the model does not depend on covariates but only on the intercept we can calculate global behaviors such as
sojourn times ( example : I → R and R → S)

• Otherwise, test with different reasonable configurations of the variables (example : S → I )
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Computational Aspects

One Ingredient

• Forward algorithm that directly gives P(Y |Θ, Γ,Ψ)

• Recurrence relation with sums and products

• Product rule in differentiation → gradient and Hessian calculated by recurrence

• We eliminate latent states → we are not encumbered as in EM or Gibbs

• Exponential cost in the number of coupled latent state chains → we keep independent chains

Several possible delicious Bayesian recipes

• Langevin algorithm on Riemannian manifold ? (Hessian-informed by definition, little assumption concerning the
posterior)

• Hybrid Monte-Carlo ? (Possibly informed using the Hessian at the mode, little assumption concerning the posterior)

• Metropolis-within-Gibbs ? (Possibly informed using the Hessian at the mode, little assumption concerning the posterior)

• Deterministic exploration in the style of INLA ? (Informed using the Hessian at the mode by definition, assuming
lumpoidal posterior)

• Self-normalized Importance Sampling ? (Not realistic without using the Hessian at the mode, assuming lumpoidal
posterior)

Balance to find between the striking power of the Hessian and its cost
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Experimental results

None
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That’s all folks !

Questions ?
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PhD thesis, Université Paul Sabatier (Toulouse), 2024.

Jean Peyhardi, Catherine Trottier, and Yann Guédon.
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