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Introduction: MRF, GMRF



MRF in image processing

Let S be the lattice of n sites in an image. X = {Xs}s∈S is a MRF if and only if, ∀s ∈ S:

p(xs |xS\s) = p(xs |xNs )

where Ns denotes the neighborhood of the s site.

The Hammersley-Clifford theorem1 allows to write,considering only pairwise site interactions ψ:

p(x) = 1
γ

exp
(

−
∑
s∈S

∑
s′∈Ns

ψ(xs , xs′)
)
.

Computing γ > 0 is intractable in general, so realizations X = x are obtained through iterative
sampling techniques, such as Gibbs sampling2.

1Clifford and Hammersley, “Markov fields on finite graphs and lattices”, 1971.
2Geman and Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images”, 1984.
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GRF and GMRF

Z is a Gaussian random field on S iff Z ∼ N (µ,Σ), with µ ∈ Rn and Σ ∈ Rn×n a covariance matrix.

Upon known conditions on Σ3, GRF are also Markovian, and are then referred to as Gaussian Markov
random fields (GMRF). Depending on Σ, GMRF can be sampled with:

• Cholesky decomposition: S is small.
• Fourier sampling: S is a torus and Σ is circulant.
• Spectral sampling: Σ belongs to an extended Gneiting class of covariances4.

3Rozanov, Markov random fields, 1982, p. 120.
4Allard et al., “Simulating space-time random fields with nonseparable Gneiting-type covariance functions”, 2020.
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Our proposition

Sampling a GMRF in Rn is computationally efficient:

• We propose to use GMRF as proxies for discrete fields in Ωn

• What are the properties of the resulting field?
• How can this help for inference?
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Sampling



The initial idea

‘If you look at a thresholded GMRF, it looks like a MRF”

(a) Z = z, GMRF real. (b) {zs ≥ 0}s∈S (c) MRF real.
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Moving to K > 2 classes

How to “threshold” to have K > 2 classes, ensuring class
balance ?

• we need Zs to lie in a higher dimension
• Design Z as a (K − 1)−valued GMRF, such that now

z ∈ R(K−1)n, and at each site s zs ∈ RK−1

• Example in the K = 3 classes cases
Thus, in dimension K − 1 we can split into K balanced
classes.

(a) z1, GMRF real. (b) z2, GMRF real.

(c) location of each zs
in R2

(d) Splitting in 3
classes
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Formalizing (I)

We need to formalize:
• the splitting within RK−1

• a proper writing of X given Z

Fig. 1: Unit 2-simplex and splittingDefinition (Unit simplex)

A unit P-simplex is a regular simplex belonging in RP , whose P + 1 vertices lie on a unit sphere.
From5 we take its vertices v ∈ RP as vP+1 = −1√

P 1 and :

vj =
√

P + 1
P ej −

√
P + 1 − 1
P

√
P

1 ∀1 ≤ j ≤ P

with 1 ∈ RP a vector of ones and ej ∈ RP the j−th basis vector.
5Anderson and Thron, “Coordinate Permutation-Invariant Unit N-Simplexes in N dimensions”, 2021.
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Formalizing (II)

Definition (Gaussian Unit-simplex Markov random field (GUM))

Let K be the number of classes to sample from, and UK−1 the K vertices of a unit (K − 1)-simplex.
Let also Z ∼ N (0,Σ) be a GMRF taking values in Rn(K−1), such that Z = {Zs}s∈S and Zs takes
values in RK−1.

We define ϕK ,c : Rn(K−1) 7→ Rn such that:

ϕK ,c(Z) =
K∑

i=1
ωiπ

c
i (Z)

πc
i indicates, site-wise, the distance between Z and the i−th vertices vi of UK−1, such that ∀s ∈ S:

πc
i (Zs) = exp(−c−2∥Zs − vi∥2)∑K

k=1 exp(−c−2∥Zs − vk∥2)

with c > 0, vk , vi ∈ UK−1 unit simplex vertices, and ωi ∈ Ω ⊂ N. ϕK ,c(Z) is named a GUM random
field.
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GUM : illustration

A look at the values taken by ϕK ,c(z):

(a) (b) (c) (d) (e)

Property 1: Z being a GMRF, then ϕK ,c(Z) is also a Markov field.

Property 2: when c → 0, ϕK ,c(Z) get close to a mixture of Dirac masses:

ϕK ,c(Z) −→
c→0

K∑
i=1

ωiδ[∥Z−vi ∥2≤∥Z−vk ∥2, ∀vk ∈UK−1

]
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Discrete GUM

Property 2: when c → 0, ϕK ,c(Z) get close to a mixture of Dirac
masses:

ϕK ,c(Z) −→
c→0

K∑
i=1

ωiδ[∥Z−vi ∥2≤∥Z−vk ∥2, ∀vk ∈UK−1

]
Rewording lim

c→0
ϕK ,c(Z) = X = {Xs}s∈S , we have ∀s ∈ S:

Xs = ωk∗ with k∗ chosen such that vk∗ = arg min
v∈UK−1

∥Zs − v∥2

Some insights
• X should be Markovian too
• related to a multivariate sigmoid and / or a transformed gaussian

random field

(a) z1 (b) z2

(c) Location &
labels

(d) x
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Numerical results

Implementation: Python & JAX, in CPU and GPU. Available on Github:
https://github.com/HGangloff/mrfx

We want to assess:

• sampling speed
• statistical properties

We evaluate:

• DGUMS based on Fourier GMRF sampling6

• and on spectral GMRF sampling7

• MRF with chromatic Gibbs sampling8

6Rue and Held, Gaussian Markov random fields: theory and applications, 2005.
7Allard et al., “Simulating space-time random fields with nonseparable Gneiting-type covariance functions”, 2020.
8Gonzalez et al., “Parallel Gibbs sampling: From colored fields to thin junction trees”, 2011.
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Numerical results: sampling speed
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(a) CPU: Fourier sampling
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(b) Spectral sampling
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(c) Gibbs sampling
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(d) GPU: Fourier sampling
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(e) Spectral sampling
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(f) Gibbs sampling

12 / 20



Numerical results: statistical properties

Pointwise measures, denoting πk = p(xs = k)

K 2 3 4

DGUM / Fourier
π̂0 0.4924 0.3278 0.2369

std(π̂0) 0.0650 0.0497 0.0533

DGUM / Spectral
π̂0 0.5036 0.3296 0.2534

std(π̂0) 0.0935 0.0780 0.0711

Gibbs sampling
π̂0 0.4980 0.3470 0.2480

std(π̂0) 0.0399 0.0581 0.0505

Pairwise statistics :

0 10 20 30 40
Distance d = i j  (pixels)

0.5
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x i
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x j

)

DGUM / Fourier
DGUM / Spectral
MRF and Gibbs sampler
1/K
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Inference



Inferring with GUMs

Observation model: we assume y is obtained as a noisy version of x. For instance: class-wise
parameters changes within Gaussian or Poisson distributions.

We conjecture that inferring with a GUM prior is not tractable.

The GUM inverse problem relies on:

p(y, x) ∝ p(y|x)p(x) = p(y|x)
∫
Rn(K−1)

p(x|z)dz

• not that simple
• too much information is lost in p(x|z)

(a) z1 (b) z2 (c) x (d) y

Example illustration
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The problems & solutions: inference with Kernel MLE

∀s we can write a likelihood:

Lk(ys) = p(ys |xs = ωk)

We then design a maximum of kernel MLE, ∀s:

x̂ρ = arg max
k

(
ΣρLk(y)

)
s

with Σρ depending on a covariance function of range parameter ρ.

Then: how to determine ρ ?

(a) y (b) x

(c) ΣρL0(y) (d) ΣρL1(y) (e) ΣρL2(y)

(f) x̂ρ 15 / 20



The problems & solutions (II): optimization problem

How to determine ρ ? → a MAP estimator:

ρ∗ = arg max
ρ>0

p(y|x̂ρ)p(x̂ρ)

Let us assume a Potts-like potential for x, assuming λ > 0:

p(x) ∝ exp (−λU(x)) , and U(x) =
∑
s∈S

∑
s′∈Ns

1{xs =xs′ }

Then the MAP estimator can be rewritten:

arg min
ρ>0

− log(p(y|x̂ρ)) + λU(x̂ρ) (Pλ)

This can be solved quite easily numerically, for a given λ, because computing x̂ρ is fast.

Then: how to determine λ ?
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The problems & solutions (III): homotopy approach

How to determine λ ? → Proximity to sparse optimization problems:
• Solutions of (Pλ) lies on the Pareto frontier
• Homotopy methods probe this frontier until a solution is found

Purpose : we can trade the choice for λ with the choice for a ℓ2-related
parameter.

arg min
λ

∣∣∣∣∣1 −
∥∥∥∥y − µx̂ρ

σx̂ρ

∥∥∥∥
2

∣∣∣∣∣ such that ρ is solution to (Pλ) (Phom)

Rephrasing : correctness of solution found for λ with respect to the
known noise parameter (mean, variance) gathered under Θ ?

0.36 0.38 0.40 0.42 0.44
0

0.8

0.9

1.0

1.1

2

Fig. 2: Pareto frontier: solutions to (Pλ)
are under-optimal above the curve and
unattainable below.
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Inference: wrapping up

Several layers of nested problems:

• The core problem: an estimator x̂ρ that is computationally cheap, for a given ρ
• ρ is found solving (Pλ) for a given λ
• λ is found solving (Phom) given noise parameters Θ
• Θ is estimated by an alternating scheme (not detailed here)

Preliminary results:

Fig. 3: Error rate (left) and computation time(right) under Gaussian noise with means at {1, 2, . . . , K} and varying standard deviation σ.
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Next steps



Next steps

Sampling:
• Properties of X
• Class unbalance

Inference:
• Relation between inference formalism and GUMS (if any)
• Formalize the problem nesting & relation to sparse optimization
• Numerical results & real microscopy images

Representations:
• The probability simplex
• Uncertainty quantification

(a) Pointwise DGUM density in
the probability simplex (K = 3 ).

(b) x̂ρ (c) Tentative
uncertainty

19 / 20



Resources

Take-home message: to avoid Gibbs-induced computational costs, we propose:

• a fast sampling method that mimic Potts models
• a fast nested inference method, suitable for unsupervised inverse problems

Resources so far:

• Sampling was described in SSP 20259

• Sampling code is available10

In progress:

• journal paper to wrap this up
• related: a tutorial on Markov models in image processing (with Julien Stoehr)

9Courbot and Gangloff, “Gaussian Unit-simplex Markov random fields as a fast proxy for MRF sampling”, 2025.
10https://github.com/HGangloff/mrfx

20 / 20

https://github.com/HGangloff/mrfx

	Introduction: MRF, GMRF
	Sampling
	Method
	Some results

	Inference [height=1em]WIP
	Next steps

	anm0: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


