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Introduction: MRF, GMRF



MREF in image processing

Let S be the lattice of n sites in an image. X = {X;}ses is a MRF if and only if, Vs € S:

P(XS|XS\5) = p(xs|xn,)
where N denotes the neighborhood of the s site.

The Hammersley-Clifford theorem?® allows to write,considering only pairwise site interactions 1

p(x) = *e><p 3> W, xe)

seS s’eNs

Computing v > 0 is intractable in general, so realizations X = x are obtained through iterative
sampling techniques, such as Gibbs sampling?.

LClifford and Hammersley, “Markov fields on finite graphs and lattices”, 1971.

2Geman and Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images”, 1984



GRF and

Z is a Gaussian random field on S iff Z ~ N(p, X), with u € R” and X € R"*" a covariance mattrix.

Upon known conditions on X3, GRF are also Markovian, and are then referred to as Gaussian Markov

random fields (GMRF). Depending on £, GMRF can be sampled with:

= Cholesky decomposition: S is small.

= Fourier sampling: S is a torus and X is circulant.

= Spectral sampling: X belongs to an extended Gneiting class of covariances*.

3Rozanov, Markov random fields, 1982, p. 120.

#Allard et al., “Simulating space-time random fields with nonseparable Gneiting-type covariance functions”, 2020.



Our proposition

Sampling a GMRF in R" is computationally efficient:

= We propose to use GMRF as proxies for discrete fields in Q"
= What are the properties of the resulting field?

= How can this help for inference?



Sampling



The initial idea

‘If you look at a thresholded GMRF, it looks like a MRF"

(a) Z = z, GMREF real. (b) {zs > 0}ses (c) MRF real.



Moving to K > 2 classes

How to “threshold” to have K > 2 classes, ensuring class
balance ?

= we need Z; to lie in a higher dimension

= Design Z as a (K — 1)—valued GMRF, such that now
z € RK=1n and at each site s z, € RK—1

(a) z1, GMREF real. (b) z2, GMREF real.
= Example in the K = 3 classes cases

Thus, in dimension K — 1 we can split into K balanced
classes.

(c) location of each zs (d) Splitting in 3
in R? classes



U]

We need to formalize:

» the splitting within RK—1

= a proper writing of X given Z

Definition (Uﬂit simplex) Fig. 1: Unit 2-simplex and splitting

A unit P-simplex is a regular simplex belonging in R”, whose P + 1 vertices lie on a unit sphere.
From® we take its vertices v € RP as vp,; = \7—%1 and :

[Py JPr1-1

v, = e 1Vi<j<P
J P J P\/ﬁ S/ >

with 1 € RF a vector of ones and e; € R” the j—th basis vector.

5 Anderson and Thron, “Coordinate Permutation-Invariant Unit N-Simplexes in N dimensions”, 2021 7720



Formalizing (I1)

Definition (Gaussian Unit-simplex Markov random field (GUM))

Let K be the number of classes to sample from, and Uk_; the K vertices of a unit (K — 1)-simplex.
Let also Z ~ N(0, X) be a GMRF taking values in R"K=1) 'such that Z = {Z,}.cs and Z, takes
values in RK-1.

We define ¢k .: R"K=1) 3 R" such that:

K
PK.c(2) = Zwﬂrf(Z)

«f indicates, site-wise, the distance between Z and the i—th vertices v; of Ux_1, such that Vs € S:
_exp(=c?Zs —vil?)
= =K _

> k1 &P(—c2[1Zs — vi?)

with ¢ > 0, vk, v; € Ug_1 unit simplex vertices, and w; € Q C N. ¢ (Z) is named a GUM random
field.

i (Zs)



GUM : illustration

A look at the values taken by ¢k (2):

c=2.00 c=185

Property 1: Z being a GMRF, then ¢k (Z) is also a Markov field.
Property 2: when ¢ — 0, ¢k (Z) get close to a mixture of Dirac masses:

K

Z) — E wid
¢K’C( ) c=0 — ! [HZ_ViHZSHZ_Vk”L VVkGUK—l]
i=



Discrete GUM

Property 2: when ¢ — 0, ¢ (Z) get close to a mixture of Dirac
masses:

K
ox.e(2) = Z;w’6[|\2—v,-n2§|\2—m|z, Vi EUk 1
Rewording Iim0 dk,c(Z) = X = {Xs}ses, we have Vs € S:
c—
Xs = wi« with k™ chosen such that vy« = argmin||Zs — v||2

veUk_1

Some insights A

= X should be Markovian too

= related to a multivariate sigmoid and / or a transformed gaussian () Location &

random field labels



Numerical results

Implementation: Python & JAX, in CPU and GPU. Available on Github:
https://github.com/HGangloff/mrfx

We want to assess:

= sampling speed

= statistical properties
We evaluate:

= DGUMS based on Fourier GMRF sampling®
= and on spectral GMRF sampling’
= MRF with chromatic Gibbs sampling®

6Rue and Held, Gaussian Markov random fields: theory and applications, 2005.
7 Allard et al., “Simulating space-time random fields with nonseparable Gneiting-type covariance functions”, 2020.

8Gonzalez et al., “Parallel Gibbs sampling: From colored fields to thin junction trees”, 2011.


https://github.com/HGangloff/mrfx

Numerical results: sampling speed
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Numerical results: statistical properties

Pointwise measures, denoting mx = p(xs = k)

Pairwise statistics :

K 2 3 4
o | 04924 03278 02369 |
DGUM / Fourier &
std(fo) | 0.0650 0.0497 0.0533
o 0.5036 0.3296 0.2534
DGUM / Spectral
std(fo) | 0.0935 0.0780 0.0711
o 0.4980 0.3470 0.2480
Gibbs sampling
std(fo) | 0.0399 0.0581 0.0505
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Distance d = ||i — j|| (pixels)



Inference



Inferring with GUMs

Observation model: we assume y is obtained as a noisy version of x. For instance: class-wise
parameters changes within Gaussian or Poisson distributions.

We conjecture that inferring with a GUM prior is not tractable.

The GUM inverse problem relies on:

ply:) o plyIXIp() = ply1x) [ plxiz)oz

Rn(K—1)

= not that simple
= too much information is lost in p(x|z)

(d)y



The problems & solutions: inference with Kernel MLE

Vs we can write a likelihood:

L(ys) = p(yslxs = wk)

We then design a maximum of kernel MLE, Vs:

o L AT R Y 'S &
X, = arglnax (Zka(y))s : ‘? AR
AL
Al -::‘ f .7.
with X, depending on a covariance function of range parameter p. o e LS

Then: how to determine p 7

v

15 / 20



The problems & solutions (I1): optimization problem

How to determine p 7 — a MAP estimator:

p* = argmax p(y[%,)p(X,)
p>0

Let us assume a Potts-like potential for x, assuming A > 0:

p(x) o exp (—=AU(x)), and U(x Z Z Li=xy

seS s’eNs

Then the MAP estimator can be rewritten:

argmin — log(p(y|X,)) + AU(%,)
p>0

This can be solved quite easily numerically, for a given A, because computing X, is fast.

Then: how to determine \ ?

16 / 20



The problems & solutions (I11): homotopy approach

How to determine A 7 — Proximity to sparse optimization problems:

= Solutions of (P,) lies on the Pareto frontier 11

<

= Homotopy methods probe this frontier until a solution is found 101

0.9+

Purpose : we can trade the choice for A with the choice for a /,-related ool

parameter. 056 0% o4  oar 0w
Lo

Fig. 2: Pareto frontier: solutions to (Px)
('p ) are under-optimal above the curve and
hom .
unattainable below.

Y — Ky,
o5

such that p is solution to (Py)

argmin |1 — H

A

P 2

Rephrasing : correctness of solution found for A with respect to the
known noise parameter (mean, variance) gathered under © ?



Inference: wrapping up

Several layers of nested problems:

= The core problem: an estimator X, that is computationally cheap, for a given p
= p is found solving (Py) for a given A

= X is found solving (Phom) given noise parameters ©

= O is estimated by an alternating scheme (not detailed here)

Preliminary results:
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Fig. 3: Error rate (left) and computation time(right) under Gaussian noise with means at {1,2, ..., K} and varying standard deviation o.



Next steps



Next steps

Sampling:
= Properties of X

= Class unbalance

Inference:

= Relation between inference formalism and GUMS (if any)

Wo w1

= Formalize the problem nesting & relation to sparse optimization (a) Pointwise DGUM density in

the probability simplex (K = 3).

= Numerical results & real microscopy images

Representations:
= The probability simplex

= Uncertainty quantification

(c) Tentative
uncertainty



Resources

Take-home message: to avoid Gibbs-induced computational costs, we propose:

= a fast sampling method that mimic Potts models

= a fast nested inference method, suitable for unsupervised inverse problems

Resources so far:

= Sampling was described in SSP 2025°

= Sampling code is available!®
In progress:

= journal paper to wrap this up

= related: a tutorial on Markov models in image processing (with Julien Stoehr)

9 Courbot and Gangloff, “Gaussian Unit-simplex Markov random fields as a fast proxy for MRF sampling”, 2025.
LOnttps: //github. con/HGanglof f /mrx



https://github.com/HGangloff/mrfx
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