Gaussian Markov random fields for MRF sampling

(and inference)

Jean-Baptiste Courbot¹ & Hugo Gangloff²

July 3, 2025

¹ IRIMAS - UR 7499 – Université de Haute-Alsace, Mulhouse, France

² Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, Palaiseau, France

I. Introduction: MRF, GMRF

II. Sampling

II.1 Method

II.2 Some results

III. Inference 🛦

IV. Next steps

Introduction: MRF, GMRF

MRF in image processing

Let S be the lattice of n sites in an image. $\mathbf{X} = \{X_s\}_{s \in S}$ is a MRF if and only if, $\forall s \in S$:

$$p(x_s|\mathbf{x}_{S\setminus s})=p(x_s|\mathbf{x}_{N_s})$$

where N_s denotes the neighborhood of the s site.

The Hammersley-Clifford theorem¹ allows to write, considering only pairwise site interactions ψ :

$$p(\mathbf{x}) = rac{1}{\gamma} \exp \left(-\sum_{\mathbf{s} \in \mathcal{S}} \sum_{\mathbf{s}' \in \mathcal{N}_{\mathbf{s}}} \psi(\mathbf{x}_{\mathbf{s}}, \mathbf{x}_{\mathbf{s}'})
ight).$$

Computing $\gamma > 0$ is intractable in general, so realizations $\mathbf{X} = \mathbf{x}$ are obtained through iterative sampling techniques, such as Gibbs sampling².

¹Clifford and Hammersley, "Markov fields on finite graphs and lattices", 1971.

²Geman and Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images", 1984.

GRF and GMRF

 ${f Z}$ is a Gaussian random field on ${\cal S}$ iff ${f Z} \sim {\cal N}({m \mu},{f \Sigma})$, with ${m \mu} \in \mathbb{R}^n$ and ${f \Sigma} \in \mathbb{R}^{n imes n}$ a covariance matrix.

Upon known conditions on Σ^3 , GRF are also Markovian, and are then referred to as Gaussian Markov random fields (GMRF). Depending on Σ , GMRF can be sampled with:

- Cholesky decomposition: S is small.
- Fourier sampling: S is a torus and Σ is circulant.
- Spectral sampling: Σ belongs to an extended Gneiting class of covariances⁴.

³Rozanov, Markov random fields, 1982, p. 120.

⁴ Allard et al., "Simulating space-time random fields with nonseparable Gneiting-type covariance functions", 2020.

Our proposition

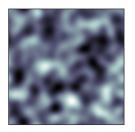
Sampling a GMRF in \mathbb{R}^n is computationally efficient:

- We propose to use GMRF as proxies for discrete fields in Ω^n
- What are the properties of the resulting field?
- How can this help for inference?

Sampling

The initial idea

'If you look at a thresholded GMRF, it looks like a MRF"



(a) $\mathbf{Z} = \mathbf{z}$, GMRF real.

(b) $\{z_s \geq 0\}_{s \in \mathcal{S}}$

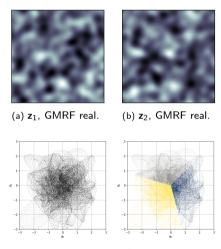
(c) MRF real.

Moving to K > 2 classes

How to "threshold" to have K > 2 classes, ensuring class balance ?

- we need Z_s to lie in a higher dimension
- Design **Z** as a (K-1)-valued GMRF, such that now $\mathbf{z} \in \mathbb{R}^{(K-1)n}$, and at each site $s \ \mathbf{z}_s \in \mathbb{R}^{K-1}$
- Example in the K = 3 classes cases

Thus, in dimension K-1 we can split into K balanced classes.



(c) location of each \textbf{z}_s (d) Splitting in 3 in \mathbb{R}^2 classes

Formalizing (I)

We need to formalize:

- the splitting within \mathbb{R}^{K-1}
- a proper writing of X given Z

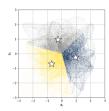


Fig. 1: Unit 2-simplex and splitting

Definition (Unit simplex)

A unit P-simplex is a regular simplex belonging in \mathbb{R}^P , whose P+1 vertices lie on a unit sphere. From⁵ we take its vertices $\mathbf{v} \in \mathbb{R}^P$ as $\mathbf{v}_{P+1} = \frac{-1}{\sqrt{P}} \mathbf{1}$ and :

$$\mathbf{v}_j = \sqrt{\frac{P+1}{P}}\mathbf{e}_j - \frac{\sqrt{P+1}-1}{P\sqrt{P}}\mathbf{1} \ \forall 1 \leq j \leq P$$

with $\mathbf{1} \in \mathbb{R}^P$ a vector of ones and $\mathbf{e}_i \in \mathbb{R}^P$ the j-th basis vector.

⁵Anderson and Thron, "Coordinate Permutation-Invariant Unit N-Simplexes in N dimensions", 2021.

Formalizing (II)

Definition (Gaussian Unit-simplex Markov random field (GUM))

Let K be the number of classes to sample from, and \mathbf{U}_{K-1} the K vertices of a unit (K-1)-simplex. Let also $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ be a GMRF taking values in $\mathbb{R}^{n(K-1)}$, such that $\mathbf{Z} = \{\mathbf{Z}_s\}_{s \in \mathcal{S}}$ and \mathbf{Z}_s takes values in \mathbb{R}^{K-1} .

We define $\phi_{K,c} \colon \mathbb{R}^{n(K-1)} \mapsto \mathbb{R}^n$ such that:

$$\phi_{K,c}(\mathbf{Z}) = \sum_{i=1}^K \omega_i \pi_i^c(\mathbf{Z})$$

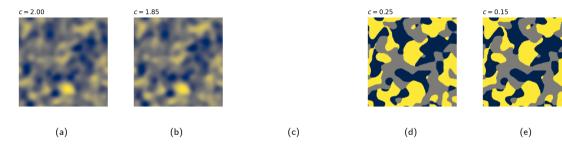
 π_i^c indicates, site-wise, the distance between **Z** and the i-th vertices \mathbf{v}_i of \mathbf{U}_{K-1} , such that $\forall s \in \mathcal{S}$:

$$\pi_i^c(\mathbf{Z}_s) = \frac{\exp(-c^{-2}\|\mathbf{Z}_s - \mathbf{v}_i\|^2)}{\sum_{k=1}^K \exp(-c^{-2}\|\mathbf{Z}_s - \mathbf{v}_k\|^2)}$$

with c > 0, $\mathbf{v}_k, \mathbf{v}_i \in \mathbf{U}_{K-1}$ unit simplex vertices, and $\omega_i \in \Omega \subset \mathbb{N}$. $\phi_{K,c}(\mathbf{Z})$ is named a *GUM random field*.

GUM: illustration

A look at the values taken by $\phi_{K,c}(z)$:



Property 1: **Z** being a GMRF, then $\phi_{K,c}(\mathbf{Z})$ is also a Markov field.

Property 2: when $c \to 0$, $\phi_{K,c}(\mathbf{Z})$ get close to a mixture of Dirac masses:

$$\phi_{K,c}(\mathbf{Z}) \xrightarrow[c \to 0]{} \sum_{i=1}^{K} \omega_i \delta_{\left[\|\mathbf{Z} - \mathbf{v}_i\|_2 \le \|\mathbf{Z} - \mathbf{v}_k\|_2, \ \forall \mathbf{v}_k \in \mathbf{U}_{K-1}\right]}$$

Discrete GUM

Property 2: when $c \to 0$, $\phi_{K,c}(\mathbf{Z})$ get close to a mixture of Dirac masses:

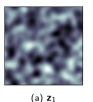
$$\phi_{K,c}(\mathbf{Z}) \underset{c \to 0}{\longrightarrow} \sum_{i=1}^{K} \omega_{i} \delta_{\left[\|\mathbf{Z} - \mathbf{v}_{i}\|_{2} \leq \|\mathbf{Z} - \mathbf{v}_{k}\|_{2}, \ \forall \mathbf{v}_{k} \in \mathbf{U}_{K-1}\right]}$$

Rewording $\lim_{c\to 0} \phi_{K,c}(\mathbf{Z}) = \mathbf{X} = \{X_s\}_{s\in\mathcal{S}}$, we have $\forall s\in\mathcal{S}$:

$$X_s = \omega_{k^*}$$
 with k^* chosen such that $\mathbf{v}_{k^*} = rg \min_{\mathbf{v} \in \mathbf{U}_{K-1}} \|\mathbf{Z}_s - \mathbf{v}\|_2$

Some insights 🛦

- X should be Markovian too
- related to a multivariate sigmoid and / or a transformed gaussian random field



(b) \mathbf{z}_2

(c) Location & labels

(d) **x**

Numerical results

 $\label{lem:lem:python \& JAX, in CPU and GPU. Available on Github: $$ $$ https://github.com/HGangloff/mrfx $$$

We want to assess:

- sampling speed
- statistical properties

We evaluate:

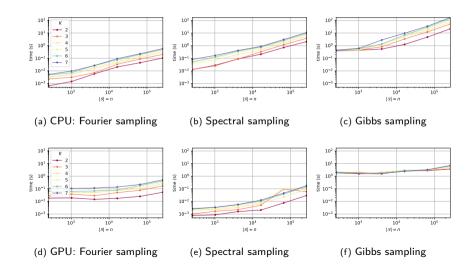
- DGUMS based on Fourier GMRF sampling⁶
- and on spectral GMRF sampling⁷
- MRF with chromatic Gibbs sampling⁸

⁶Rue and Held, Gaussian Markov random fields: theory and applications, 2005.

⁷Allard et al., "Simulating space-time random fields with nonseparable Gneiting-type covariance functions", 2020.

⁸Gonzalez et al., "Parallel Gibbs sampling: From colored fields to thin junction trees", 2011.

Numerical results: sampling speed

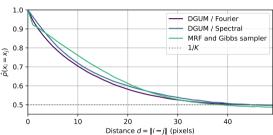


Numerical results: statistical properties

Pointwise measures, denoting $\pi_k = p(x_s = k)$

	К	2	3	4	
DGUM / Fourier	$\hat{\pi}_0$	0.4924	0.3278	0.2369	, (× = ×)
	$std(\hat{\pi}_0)$	0.0650	0.0497	0.0533	
DGUM / Spectral	$\hat{\pi}_0$	0.5036	0.3296	0.2534	
	$std(\hat{\pi}_0)$	0.0935	0.0780	0.0711	
Gibbs sampling	$\hat{\pi}_0$	0.4980	0.3470	0.2480	
	$std(\hat{\pi}_0)$	0.0399	0.0581	0.0505	

Pairwise statistics:



Inference 🖄

Inferring with GUMs

Observation model: we assume \mathbf{y} is obtained as a noisy version of \mathbf{x} . For instance: class-wise parameters changes within Gaussian or Poisson distributions.

We conjecture that inferring with a GUM prior is not tractable.

The GUM inverse problem relies on:

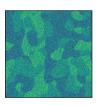
$$p(\mathbf{y}, \mathbf{x}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}) \int_{\mathbb{R}^{n(K-1)}} p(\mathbf{x}|\mathbf{z}) d\mathbf{z}$$

- not that simple
- too much information is lost in p(x|z)

(a) **z**₁

(b) \mathbf{z}_2

(c) x



(d) y

The problems & solutions: inference with Kernel MLE

 $\forall s$ we can write a likelihood:

$$L_k(y_s) = p(y_s|x_s = \omega_k)$$

We then design a maximum of kernel MLE, $\forall s$:

$$\hat{\mathbf{x}}_{
ho} = rg \max_{k} \ ig(\mathbf{\Sigma}_{
ho} L_{k}(\mathbf{y})ig)_{s}$$

with $\mathbf{\Sigma}_{\rho}$ depending on a covariance function of range parameter $\rho.$

Then: how to determine ρ ?

The problems & solutions (II): optimization problem

How to determine ρ ? \rightarrow a MAP estimator:

$$\rho^* = \argmax_{\rho > 0} \; p(\mathbf{y}|\hat{\mathbf{x}}_\rho) p(\hat{\mathbf{x}}_\rho)$$

Let us assume a Potts-like potential for \mathbf{x} , assuming $\lambda > 0$:

$$p(\mathbf{x}) \propto \exp\left(-\lambda U(\mathbf{x})\right)$$
, and $U(\mathbf{x}) = \sum_{s \in \mathcal{S}} \sum_{s' \in N_s} \mathbb{1}_{\{x_s = x_{s'}\}}$

Then the MAP estimator can be rewritten:

$$\underset{\rho>0}{\arg\min} \ -\log(p(\mathbf{y}|\hat{\mathbf{x}}_{\rho})) + \lambda U(\hat{\mathbf{x}}_{\rho}) \tag{\mathcal{P}_{λ}}$$

This can be solved quite easily numerically, for a given λ , because computing $\hat{\mathbf{x}}_{\rho}$ is fast.

Then: how to determine λ ?

The problems & solutions (III): homotopy approach $ilde{\mathbb{A}}$

How to determine λ ? \rightarrow Proximity to sparse optimization problems:

- Solutions of (\mathcal{P}_{λ}) lies on the Pareto frontier
- Homotopy methods probe this frontier until a solution is found

Purpose : we can trade the choice for λ with the choice for a $\ell_2\text{-related}$ parameter.

Fig. 2: Pareto frontier: solutions to
$$(\mathcal{P}_{\lambda})$$
 are under-optimal above the curve and unattainable below.

$$\left\| \frac{\mathbf{y} - \boldsymbol{\mu}_{\hat{\mathbf{x}}_{\rho}}}{\sigma_{\hat{\mathbf{x}}_{\rho}}} \right\|_{2}$$
 such that ρ is solution to (\mathcal{P}_{λ}) $(\mathcal{P}_{\mathrm{hom}})$

Rephrasing : correctness of solution found for λ with respect to the known noise parameter (mean, variance) gathered under Θ ?

Inference: wrapping up 🛕

Several layers of nested problems:

- The core problem: an estimator $\hat{\mathbf{x}}_{\rho}$ that is computationally cheap, for a given ρ
- ρ is found solving (\mathcal{P}_{λ}) for a given λ
- λ is found solving (\mathcal{P}_{hom}) given noise parameters Θ
- **O** is estimated by an alternating scheme (not detailed here)

Preliminary results:

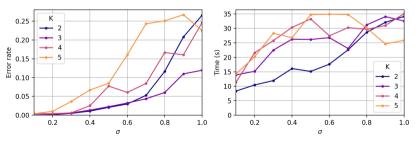


Fig. 3: Error rate (left) and computation time(right) under Gaussian noise with means at $\{1,2,\ldots,K\}$ and varying standard deviation σ .

Next steps

Sampling:

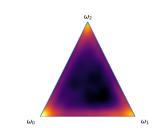
- Properties of X
- Class unbalance

Inference:

- Relation between inference formalism and GUMS (if any)
- Formalize the problem nesting & relation to sparse optimization
- Numerical results & real microscopy images

Representations:

- The probability simplex
- Uncertainty quantification



(a) Pointwise DGUM density in the probability simplex (K=3).

(b) $\hat{\mathbf{x}}_{
ho}$

(c) Tentative uncertainty

Resources

Take-home message: to avoid Gibbs-induced computational costs, we propose:

- a fast sampling method that mimic Potts models
- a fast nested inference method, suitable for unsupervised inverse problems

Resources so far:

- Sampling was described in SSP 2025⁹
- Sampling code is available¹⁰

In progress:

- journal paper to wrap this up
- related: a tutorial on Markov models in image processing (with Julien Stoehr)

⁹Courbot and Gangloff, "Gaussian Unit-simplex Markov random fields as a fast proxy for MRF sampling", 2025.

¹⁰https://github.com/HGangloff/mrfx