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Background and Notations

e Px: distribution of r.v. X in RY
o P(RY): set of all probability distributions on R?
o T: set of finite length sequences of elements in RY

e X = (Xo, Xi,...): Harris recurrent Markov chain in E C RY with
initial distribution v, kernel I1, stationary distribution p.
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Background and Notations

Px: distribution of r.v. X in RY
P(RY): set of all probability distributions on R9
T: set of finite length sequences of elements in RY

X = (Xo, X1, ...): Harris recurrent Markov chain in E C R? with
initial distribution v, kernel I1, stationary distribution p.

The kernel T rules the one step transitions of the chain, that is

Vx € RS, A€ B(E), P(Xpi1 € AX, = x) = N(x,A) = MN(A),

P(Xpi11%0) = M-
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Depth Functions on R?

Definition

A depth function in R? with respect to a probability distribution
P € P(RY) is a function Dp : R? — [0, 1] that satisfies (most of ) the
following properties:

P1 (AFFINE INVARIANCE) P3 (MAXIMALITY AT CENTER)
Dp,y.,(Ax + b) = Dp(x) for Dp is maximized at the center
all x e RY of symmetry

P2 (VANISHING AT INFINITY) P4 (MONOTONICITY)

Dp(x) — 0 as ||x|| tends to Dp decreases along rays from
infinity the deepest point
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Utility of Depth Functions

Main Applications
o Generalizations - Ex: multivariate medians

Robust statistics - Less sensitive to outliers

Outlier detection - Points with low depth are potential outliers

Data ordering - Center-outward ranking

e 6 o6 o

Data visualization - Through depth contours
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Examples of Depth functions

Halfspace depth

For any x € R? denote by #, the collection of all halfspaces that contain
X, then, the Halfspace depth is defined as

Dy(x, P) = Hig?ft P(H)

Other examples include Simplicial depth, Mahalanobis depth, Leans depth,
IRW depth ...
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Main Objectives

Develop computationally feasible tools for assessing the centrality (or
outlyingness) of finite length trajectories w.r.t. the distribution of a
Markov chain X.
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Main Objectives

Develop computationally feasible tools for assessing the centrality (or
outlyingness) of finite length trajectories w.r.t. the distribution of a
Markov chain X.

Main Challenges
o The set of finite length trajectories (T) is infinite dimensional
o Its topology (7) is not metrizable

o Even with fixed-length trajectories, standard methods suffer from:

o Failure to capture the Markovian structure
o Curse of dimensionality
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Motivation - A Concrete Example

Reflected Random Walk Model 25 g

Regular trajectory
Xo — X0 2 0 and —— Impossible trajectory #
Xnt1 = max(0, X, + W,) for

20
Regular trajectory

n € N where: e
W,=-11xY,+1 10
The Y,'s are i.i.d. exponential * z
r.v.'s with mean 1. ) .
0 1 2 3 4 5

Figure: Unfeasible trajectory (red) vs.
If Xnt1 > Xp, then Xp11 — X < 1. | regular ones (green/orange)
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Limitations of Standard Approaches

Figure: Mahalanobis depth density

Figure: Lens depth density

Key Limitations
o They fail to account for the sequential structure and temporal

dynamics of Markov data.
o The computational complexity of the best methods generally

increases exponentially with n.
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Markovian Depth Functions

Definition
A statistical depth function w.r.t. the distribution of a Markov chain X is
a function Dx : T — [0, 1] that may satisfy:

MO (INITIAL LAw INDEPENDENCE) If X and X’ have the same

transition kernel:
Dx(x) = Dx/(x)

M1 (AFFINE INVARIANCE) For any non-singular A and b € R¢:

DAerb(AX + b) = Dx(x)

M2 (VANISHING AT INFINITY) Dx(x) — 0 as x "tends to infinity" in T's
topology
July 2nd, 2025 10 /34
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Markovian Sample Path Depth

Given a depth function D on RY, we define the Markovian sample path
depth as:

Key ldea
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Markovian Sample Path Depth

Given a depth function D on RY, we define the Markovian sample path

Key Idea

depth as:
Vx = (x0,...,%n) € T, Dp(x) = | I Dn,_ (%)
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Markovian Sample Path Depth

Key ldea

Given a depth function D on RY, we define the Markovian sample path
depth as:

Interpretation

o Geometric mean of depths of
one-step transitions Dy, (X3)

@ Accounts for Markov
dependency structure

Dy (Xit1)

i
e o o
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Key Properties of Markovian Sample Path Depth

Main properties

@ (MO) Independence from initial law.
e (M1) Affine invariance.
e (M2) Vanishing at infinity.

o Continuity as a function of x.

o Continuity as a function of I1
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Asymptotic Results

Theorem (Consistency)

If log(Dn, (y)) is integrable w.r.t. ud(x)Mx(dy) in E?, then, for any initial
distribution v,

Dn(Xo, Xl, 000y Xn) — DOO(I'I)

P, -almost surely as n — co, where

Do() = exp ( [ 108 (00, () Na(e)u(a))
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Asymptotic Results

Theorem (Consistency)

If log(Dn, (y)) is integrable w.r.t. ud(x)Mx(dy) in E?, then, for any initial
distribution v,

Dn(Xo, Xl, 000y Xn) — DOO(I'I)

P, -almost surely as n — co, where

Do() = exp ( [ 108 (00, () Na(e)u(a))

Theorem (Asymptotic Normality)

If, in addition, log(Dn, (y)) is square integrable w.r.t. pud(x)Mx(dy), then
Dn(Xo, X1, ..., Xn) is asymptotically normal.
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Non-Asymptotic Bounds

Theorem (Finite sample inequalities)

Let n> 1 and x € E™Y. Consider two transition probabilities T and M on
E. Suppose:

Q Je > 0 s.t. min{Dp (xi+1), Dn;(xi+1)} > € fori <n
@ JA C B(RY) and a finite constant Cy4 such that:

sup |[Dp(x) — Do(x)| < Gq||P — Q|| 4
x€Rd

Then,
X A
1Dn(x) — D) < + €2 max |, — fi Lo
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Computational Aspects

Algorithm: Estimation of Dg(x)
Input:

e Path x = (xg,...,Xn)
o Transition probability 1 (an estimator of the true M)
@ Precision control integer M > 1

Steps:
For i=0to n—1:

O Generate M samples xj j, ..., Xxp,; from ﬁX,
@ Compute 5,- of Dﬁx- (xit1)

Output: Dg(x) = \"/@
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Computational Aspects

Main advantages

o We can use efficient algorithms to obtain [1. Ex. Nadaraya-Watson.
@ The loop can be executed in parallel.

@ The complexity is linear on n.
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Applications: Anomaly detection

Gl/G/1 Queuing System

e Consider a GI/G/1 queuing system with:
o Interarrival times {Th},>0 i.i.d. exponential with mean 0.5
o Service times {Vh},>o i.i.d. exponential with mean 0.45
o {T,} and {V,} are independent sequences
e Waiting time process: Xp+1 = max(0, X, + W,) where W, =V, — T,

@ This corresponds to the reflected random walk model introduced
earlier
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Applications: Experimental Setup

Dataset construction

o Training data:
o One long trajectory (n = 1000) from normal system behavior
o Used to learn the transition kernel of the Markov chain

o Testing data:

e Four contaminated datasets, each focused on one anomaly type
o Each dataset contains 200 paths of random length (50-200)
e 50% of paths contain the specific anomaly

Anomaly detection

© Obtain an estimator I1 of the kernel T using the long trajectory.
Q@ Apply the algorithm to estimate Dp using the halfspace depth.

© Use this estimation as the scoring function.
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Anomaly 1: Shock Anomaly

Service Time Shock

@ Generated by increasing the
service time distribution mean

o Normal system: V, ~
Exponential(mean = 0.45)

@ Anomaly segment: V, ~
Exponential(mean = 2.25)

@ The anomaly starts at a
random time and affects 10%
of the trajectory.

@ Results in sudden spikes in
waiting times

Carlos Fernandez, Stephan Clémencon
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Figure: Service time shock
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Anomaly 2: Dynamic anomaly

Faster Customer Arrivals

@ Changes the interarrival time
distribution B

@ Normal: .
T ~ Exp(mean = 0.5) -

@ Anomaly: b
Tn ~ Exp(mean = 0.1) 5

@ The anomaly starts at a .
random time and affects 20% 0 25 5 75 100 125 150 175 200
of the trajectory.

@ Simulates period of increased Figure: Faster arrivals
customer arrivals
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Anomaly 3: Dynamic anomaly

Slower service times

@ Modifies service time
distribution

@ Normal: *
V,, ~ Exp(mean = 0.45) =
e Anomaly: V,, ~ 0.55-(0,2)

@ The anomaly starts at a

random time and affects 30% °

Of the traJectory 0 25 50 75 130 125 150 175 200
@ Represents period of degraded Figure: Slower service

service
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Anomaly 4: Shift anomaly

Deterministic arrivals

@ Changes arrival process from
stochastic to deterministic

o Normal:
T, ~ Exponential(mean = 0.5)

@ Anomaly: T,=27"
(deterministic function)

@ The anomaly starts at a

random time and affects 25
consecutive steps.

@ Represents systematic rather
than random arrivals
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Figure: Deterministic arrivals
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Detection Performance - ROC Curves

True Positive Rate
True Positive Rate

7 ’ ROC curve (area = 0.95) 7 ’ ROC curve (area = 0.90)
04 06 04 06
False Positive Rate False Positive Rate

Figure: Service time shock Figure: Faster arrivals
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Detection Performance (cont.)

True Positive Rate
True Positive Rate

7 ’ ROC curve (area = 0.73) 7 ’ ROC curve (area = 0.93)
04 06 04 06
False Positive Rate False Positive Rate

Figure: Slower service times Figure: Deterministic arrivals
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Method comparison

Comparative Analysis Setup

@ We compared our Markovian depth (Dp) against standard methods:
o Isolation Forest (IF)

o Local Outlier Factor (LOF)
e Mahalanobis Depth (MD)

@ For fair comparison, all trajectories must have equal length
o Created 4 datasets (one per anomaly type):

o 100 trajectories of fixed length (200 points each)
e 5% contamination rate

@ Applied all four methods to each dataset
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Method Comparison
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Method Comparison
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Method Comparison

Table: Comparison of the AUC for different classifiers.

ARCH(1) model Queuing model
Anomaly type IF LOF MD Dp IF LOF MD Dp
Shock 075 0.82 0.68 0.85 0.67 0.98 0.44 0.98

Dynamic anomaly |  0.42 0.63 0.52 0.84 0.59 0.80 0.80 0.94
Dynamic anomaly Il 0.68 0.90 091 0.99 0.64 055 0.50 0.85
Shift 1 1 0.6 1 093 099 0.69 0.98
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Application: Clustering

DD-plots

For two sets of Markov trajectories X = {x1,...,X,, } and

Y ={yi1,...,¥Yn, } with corresponding kernel estimators ® and W, the
Markovian DD-plot is obtained by plotting in the Euclidean plane the
points {(Dg(x), Dg(x)) :x € YUY} .
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Applications: Clustering

Data generation

5 data sets, each one containing 50 trajectories of random lengths
(between 50 and 200 steps). These datasets, labeled X', Va, Vb, Ve, Va,
are constructed following an ARCH(1) model: X, 11 = m(X,) + o(X,)en.

Table: Parameters of the ARCH(1) model used

Dataset m(x) a(x)

X (1+exp(—x))"" Y(x +1.2) + 1.5¢(x — 1.2)
V. (1 +exp(—x))"F p(x +1.2) + 1.5¢(x — 1.2)
Vb (2 +exp(—x))"t (x +1.2) + 1.5¢(x — 1.2)
Ve (4 + exp(—x))*
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Applications: Clustering
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Figure: Markovian DD-plot for trajectories X and Y, (same kernel).
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Applications: Clustering
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Figure: Markovian DD-plot for trajectories X', and Y, and ).
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Conclusion

Novel framework for depth-based anomaly detection in Markov data
Overcomes limitations of traditional methods for sequential data
Strong theoretical guarantees with practical implementation

Linear scaling with trajectory length

Superior performance across different types of anomalies
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Thank you for your attention!

Code: Paper:
github.com/carlosds731/depth_markov arxiv.org/abs/2406.16759


https://github.com/carlosds731/depth_markov
https://github.com/carlosds731/depth_markov
https://github.com/carlosds731/depth_markov
https://arxiv.org/abs/2406.16759
https://arxiv.org/abs/2406.16759
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