Anomaly Detection based on Markov Data: A Statistical Depth Approach

Carlos Fernández Stephan Clémençon

LTCI, Télécom Paris, Institut Polytechnique de Paris

July 2nd, 2025

Outline

- Introduction
- Statistical Depth
- Markovian depth functions
- 4 Theoretical Results
- 6 Applications
- 6 Conclusion

Background and Notations

- P_X : distribution of r.v. X in \mathbb{R}^d
- ullet $\mathcal{P}(\mathbb{R}^d)$: set of all probability distributions on \mathbb{R}^d
- ullet \mathbb{T} : set of finite length sequences of elements in \mathbb{R}^d
- $\mathbf{X} = (X_0, X_1, \ldots)$: Harris recurrent Markov chain in $E \subseteq \mathbb{R}^d$ with initial distribution ν , kernel Π , stationary distribution μ .

Background and Notations

- P_X : distribution of r.v. X in \mathbb{R}^d
- $\mathcal{P}(\mathbb{R}^d)$: set of all probability distributions on \mathbb{R}^d
- ullet T: set of finite length sequences of elements in \mathbb{R}^d
- $\mathbf{X} = (X_0, X_1, \ldots)$: Harris recurrent Markov chain in $E \subseteq \mathbb{R}^d$ with initial distribution ν , kernel Π , stationary distribution μ .

Kernel

The kernel Π rules the one step transitions of the chain, that is

$$\forall x \in \mathbb{R}^d, A \in \mathcal{B}(E), \quad \mathbb{P}(X_{n+1} \in A | X_n = x) = \Pi(x, A) = \Pi_x(A),$$

i.e.

$$P_{(X_{n+1}|X_n)}=\Pi_{X_n}.$$

Depth Functions on \mathbb{R}^d

Definition

A depth function in \mathbb{R}^d with respect to a probability distribution $P \in \mathcal{P}(\mathbb{R}^d)$ is a function $D_P : \mathbb{R}^d \to [0,1]$ that satisfies (most of) the following properties:

- P1 (AFFINE INVARIANCE) $D_{P_{AX+b}}(Ax + b) = D_P(x) \text{ for all } x \in \mathbb{R}^d$
- P2 (VANISHING AT INFINITY) $D_P(x) \rightarrow 0$ as ||x|| tends to infinity

- P3 (MAXIMALITY AT CENTER) D_P is maximized at the center of symmetry
- P4 (MONOTONICITY) D_P decreases along rays from the deepest point

Utility of Depth Functions

Main Applications

- Generalizations Ex: multivariate medians
- Robust statistics Less sensitive to outliers
- Outlier detection Points with low depth are potential outliers
- Data ordering Center-outward ranking
- Data visualization Through depth contours

Examples of Depth functions

Halfspace depth

For any $x \in \mathbb{R}^d$ denote by \mathcal{H}_x the collection of all halfspaces that contain x, then, the Halfspace depth is defined as

$$D_h(x,P) = \inf_{H \in \mathcal{H}_x} P(H)$$

Other examples include Simplicial depth, Mahalanobis depth, Leans depth, IRW depth ...

Motivation

Main Objectives

Develop computationally feasible tools for assessing the *centrality* (or outlyingness) of finite length trajectories w.r.t. the distribution of a Markov chain X.

Motivation

Main Objectives

Develop computationally feasible tools for assessing the *centrality* (or outlyingness) of finite length trajectories w.r.t. the distribution of a Markov chain \mathbf{X} .

Main Challenges

- ullet The set of finite length trajectories (\mathbb{T}) is infinite dimensional
- Its topology (\mathcal{T}) is not metrizable
- Even with fixed-length trajectories, standard methods suffer from:
 - Failure to capture the Markovian structure
 - Curse of dimensionality

Motivation - A Concrete Example

Reflected Random Walk Model

 $X_0 = x_0 \ge 0$ and $X_{n+1} = \max(0, X_n + W_n)$ for $n \in \mathbb{N}$ where:

$$W_n = -1.1 \times Y_n + 1$$

The Y_n 's are i.i.d. exponential r.v.'s with mean 1.

Impossible trajectory Regular trajectory 1.5 X_t 1.0 0.5 0.0 1 2 3 4 5

Regular trajectory

Notice that

If $X_{n+1} > X_n$, then $X_{n+1} - X_n \le 1$.

Figure: Unfeasible trajectory (red) vs. regular ones (green/orange)

2.5

Limitations of Standard Approaches

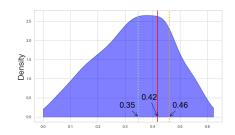


Figure: Lens depth density

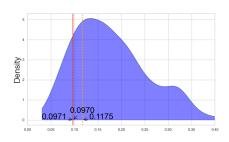


Figure: Mahalanobis depth density

Key Limitations

- They fail to account for the sequential structure and temporal dynamics of Markov data.
- The computational complexity of the best methods generally increases exponentially with n.

Markovian Depth Functions

Definition

A statistical depth function w.r.t. the distribution of a Markov chain \boldsymbol{X} is a function $\boldsymbol{D}_{\boldsymbol{X}}:\mathbb{T}\to[0,1]$ that may satisfy:

MO (INITIAL LAW INDEPENDENCE) If **X** and **X**' have the same transition kernel:

$$\mathbf{D}_{\mathbf{X}}(\mathbf{x}) = \mathbf{D}_{\mathbf{X}'}(\mathbf{x})$$

M1 (Affine Invariance) For any non-singular A and $b \in \mathbb{R}^d$:

$$\mathbf{D}_{A\mathbf{X}+b}(A\mathbf{x}+b)=\mathbf{D}_{\mathbf{X}}(\mathbf{x})$$

M2 (Vanishing at Infinity) $\mathbf{D}_{\mathbf{X}}(\mathbf{x}) \to 0$ as \mathbf{x} "tends to infinity" in \mathbb{T} 's topology

Markovian Sample Path Depth

Key Idea

Given a depth function D on \mathbb{R}^d , we define the Markovian sample path depth as:

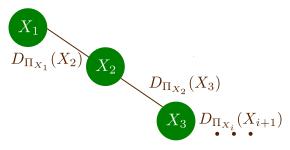
$$\forall \mathbf{x} = (x_0, \dots, x_n) \in \mathbb{T}, \ D_{\Pi}(\mathbf{x}) = \sqrt[n]{\prod_{i=1}^n D_{\Pi_{x_{i-1}}}(x_i)}$$

Markovian Sample Path Depth

Key Idea

Given a depth function D on \mathbb{R}^d , we define the Markovian sample path depth as:

$$\forall \mathbf{x} = (x_0, \dots, x_n) \in \mathbb{T}, \ D_{\Pi}(\mathbf{x}) = \sqrt[n]{\prod_{i=1}^n D_{\Pi_{x_{i-1}}}(x_i)}$$



Markovian Sample Path Depth

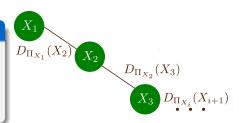
Key Idea

Given a depth function D on \mathbb{R}^d , we define the Markovian sample path depth as:

$$\forall \mathbf{x} = (x_0, \dots, x_n) \in \mathbb{T}, \ D_{\Pi}(\mathbf{x}) = \sqrt[n]{\prod_{i=1}^n D_{\Pi_{x_{i-1}}}(x_i)}$$

Interpretation

- Geometric mean of depths of one-step transitions
- Accounts for Markov dependency structure



Key Properties of Markovian Sample Path Depth

Main properties

- (M0) Independence from initial law.
- (M1) Affine invariance.
- (M2) Vanishing at infinity.
- Continuity as a function of x.
- Continuity as a function of Π

Asymptotic Results

Theorem (Consistency)

If $\log(D_{\Pi_x}(y))$ is integrable w.r.t. $\mu d(x)\Pi_x(dy)$ in E^2 , then, for any initial distribution ν ,

$$D_{\Pi}(X_0, X_1, \ldots, X_n) \rightarrow D_{\infty}(\Pi)$$

 $\mathbb{P}_{
u}$ -almost surely as $n o \infty$, where

$$D_{\infty}(\Pi) = \exp\left(\int_{E^2} \log\left(D_{\Pi_x}(y)\right) \Pi_x(dy) \mu(dx)\right).$$

Asymptotic Results

Theorem (Consistency)

If $\log(D_{\Pi_x}(y))$ is integrable w.r.t. $\mu d(x)\Pi_x(dy)$ in E^2 , then, for any initial distribution ν ,

$$D_{\Pi}(X_0, X_1, \ldots, X_n) \rightarrow D_{\infty}(\Pi)$$

 \mathbb{P}_{ν} -almost surely as $n \to \infty$, where

$$D_{\infty}(\Pi) = \exp\left(\int_{E^2} \log\left(D_{\Pi_x}(y)\right) \Pi_x(dy) \mu(dx)\right).$$

Theorem (Asymptotic Normality)

If, in addition, $\log(D_{\Pi_x}(y))$ is square integrable w.r.t. $\mu d(x)\Pi_x(dy)$, then $D_\Pi(X_0, X_1, \dots, X_n)$ is asymptotically normal.

Non-Asymptotic Bounds

Theorem (Finite sample inequalities)

Let $n \ge 1$ and $\mathbf{x} \in E^{n+1}$. Consider two transition probabilities Π and $\hat{\Pi}$ on E. Suppose:

- **1** $\exists \epsilon > 0$ s.t. $\min\{D_{\hat{\Pi}_i}(x_{i+1}), D_{\Pi_i}(x_{i+1})\} > \epsilon$ for i < n
- ② $\exists A \subset \mathcal{B}(\mathbb{R}^d)$ and a finite constant C_d such that:

$$\sup_{x \in \mathbb{R}^d} |D_P(x) - D_Q(x)| \le C_d ||P - Q||_{\mathcal{A}}$$

Then,

$$|D_{\Pi}(\mathbf{x}) - D_{\hat{\Pi}}(\mathbf{x})| \leq \frac{7}{4} C_d \frac{D_{\Pi}(\mathbf{x})}{\epsilon} \max_{i < n} ||\Pi_{x_i} - \hat{\Pi}_{x_i}||_{\mathcal{A}}$$

Computational Aspects

Algorithm: Estimation of $D_{\hat{\Pi}}(\mathbf{x})$

Input:

- Path $\mathbf{x} = (x_0, \dots, x_n)$
- Transition probability $\hat{\Pi}$ (an estimator of the true Π)
- Precision control integer $M \ge 1$

Steps:

For i = 0 to n - 1:

- Generate M samples $x_{1,i}, \ldots, x_{M,i}$ from $\hat{\Pi}_{x_i}$
- **2** Compute \widehat{D}_i of $D_{\widehat{\Pi}_{x_i}}(x_{i+1})$

Output:
$$D_{\hat{\Pi}}(\mathbf{x}) = \sqrt[n]{\prod_{i=1}^n \widehat{D}_i}$$

Computational Aspects

Main advantages

- We can use efficient algorithms to obtain $\hat{\Pi}$. Ex. Nadaraya-Watson.
- The loop can be executed in parallel.
- The complexity is linear on n.

Applications: Anomaly detection

GI/G/1 Queuing System

- Consider a GI/G/1 queuing system with:
 - Interarrival times $\{T_n\}_{n\geq 0}$ i.i.d. exponential with mean 0.5
 - Service times $\{V_n\}_{n\geq 0}$ i.i.d. exponential with mean 0.45
 - $\{T_n\}$ and $\{V_n\}$ are independent sequences
- Waiting time process: $X_{n+1} = \max(0, X_n + W_n)$ where $W_n = V_n T_n$
- This corresponds to the reflected random walk model introduced earlier

Applications: Experimental Setup

Dataset construction

- Training data:
 - One long trajectory (n = 1000) from normal system behavior
 - Used to learn the transition kernel of the Markov chain
- Testing data:
 - Four contaminated datasets, each focused on one anomaly type
 - Each dataset contains 200 paths of random length (50-200)
 - 50% of paths contain the specific anomaly

Anomaly detection

- **①** Obtain an estimator $\hat{\Pi}$ of the kernel Π using the long trajectory.
- ② Apply the algorithm to estimate D_{Π} using the halfspace depth.
- Use this estimation as the scoring function.

Anomaly 1: Shock Anomaly

Service Time Shock

- Generated by increasing the service time distribution mean
- Normal system: $V_n \sim$ Exponential(mean = 0.45)
- Anomaly segment: $V_n \sim$ Exponential(mean = 2.25)
- The anomaly starts at a random time and affects 10% of the trajectory.
- Results in sudden spikes in waiting times

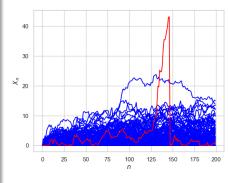


Figure: Service time shock

Anomaly 2: Dynamic anomaly

Faster Customer Arrivals

- Changes the interarrival time distribution
- Normal: $T_n \sim \text{Exp}(\text{mean} = 0.5)$
- Anomaly: $T_n \sim \text{Exp}(\text{mean} = 0.1)$
- The anomaly starts at a random time and affects 20% of the trajectory.
- Simulates period of increased customer arrivals

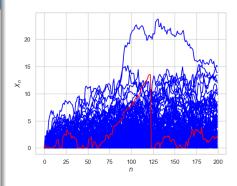


Figure: Faster arrivals

Anomaly 3: Dynamic anomaly

Slower service times

- Modifies service time distribution
- Normal: $V_n \sim \mathsf{Exp}(\mathsf{mean} = 0.45)$
- Anomaly: $V_n \sim 0.55 \cdot \mathcal{U}(0,2)$
- The anomaly starts at a random time and affects 30% of the trajectory
- Represents period of degraded service

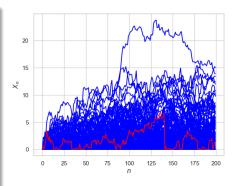


Figure: Slower service

Anomaly 4: Shift anomaly

Deterministic arrivals

- Changes arrival process from stochastic to deterministic
- Normal: $T_n \sim \text{Exponential}(\text{mean} = 0.5)$
- Anomaly: $T_n = 2^{-n}$ (deterministic function)
- The anomaly starts at a random time and affects 25 consecutive steps.
- Represents systematic rather than random arrivals

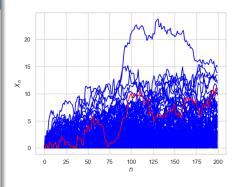


Figure: Deterministic arrivals

Detection Performance - ROC Curves

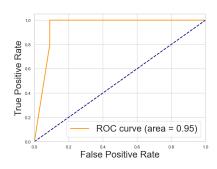


Figure: Service time shock

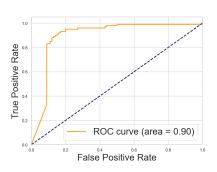


Figure: Faster arrivals

Detection Performance (cont.)

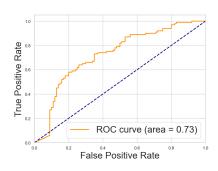


Figure: Slower service times

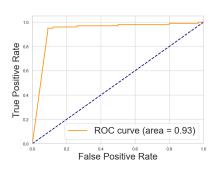


Figure: Deterministic arrivals

Method comparison

Comparative Analysis Setup

- We compared our Markovian depth (D_{Π}) against standard methods:
 - Isolation Forest (IF)
 - Local Outlier Factor (LOF)
 - Mahalanobis Depth (MD)
- For fair comparison, all trajectories must have equal length
- Created 4 datasets (one per anomaly type):
 - 100 trajectories of fixed length (200 points each)
 - 5% contamination rate
- Applied all four methods to each dataset

Method Comparison

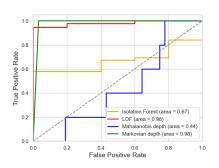


Figure: Service time shock

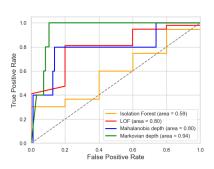


Figure: Faster arrivals

Method Comparison

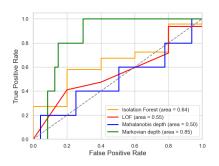


Figure: Slower service times

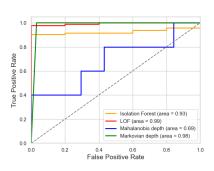


Figure: Deterministic arrivals

Method Comparison

Table: Comparison of the AUC for different classifiers.

	ARCH(1) model					Queuing model			
Anomaly type	IF	LOF	MD	D_{Π}		IF	LOF	MD	D_{Π}
Shock	0.75	0.82	0.68	0.85		0.67	0.98	0.44	0.98
Dynamic anomaly I	0.42	0.63	0.52	0.84		0.59	0.80	0.80	0.94
Dynamic anomaly II	0.68	0.90	0.91	0.99		0.64	0.55	0.50	0.85
Shift	1	1	0.6	1		0.93	0.99	0.69	0.98

Application: Clustering

DD-plots

For two sets of Markov trajectories $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}\}$ and $\mathcal{Y} = \{\mathbf{y}_1, \dots, \mathbf{y}_{n_2}\}$ with corresponding kernel estimators $\hat{\Phi}$ and $\hat{\Psi}$, the Markovian DD-plot is obtained by plotting in the Euclidean plane the points $\{(D_{\hat{\Phi}}(\mathbf{x}), D_{\hat{\Psi}}(\mathbf{x})) : \mathbf{x} \in \mathcal{X} \cup \mathcal{Y}\}$.

Applications: Clustering

Data generation

5 data sets, each one containing 50 trajectories of random lengths (between 50 and 200 steps). These datasets, labeled $\mathcal{X}, \mathcal{Y}_a, \mathcal{Y}_b, \mathcal{Y}_c, \mathcal{Y}_d$, are constructed following an ARCH(1) model: $X_{n+1} = m(X_n) + \sigma(X_n)\epsilon_n$.

Table: Parameters of the ARCH(1) model used

Dataset	m(x)	$\sigma(x)$
$\begin{array}{c} \mathcal{X} \\ \mathcal{Y}_{a} \\ \mathcal{Y}_{b} \\ \mathcal{Y}_{c} \end{array}$	$(1 + \exp(-x))^{-1}$ $(1 + \exp(-x))^{-1}$ $(2 + \exp(-x))^{-1}$ $(4 + \exp(-x))^{-1}$	$\psi(x+1.2) + 1.5\psi(x-1.2)$ $\psi(x+1.2) + 1.5\psi(x-1.2)$ $\psi(x+1.2) + 1.5\psi(x-1.2)$

Applications: Clustering

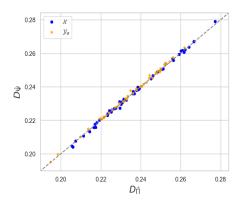


Figure: Markovian DD-plot for trajectories \mathcal{X} and \mathcal{Y}_a (same kernel).

Applications: Clustering

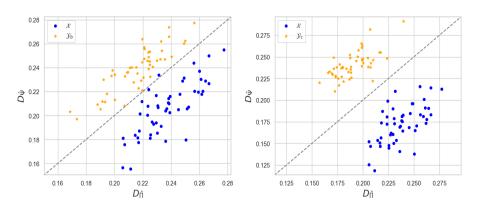


Figure: Markovian DD-plot for trajectories \mathcal{X} , and \mathcal{Y}_b , and \mathcal{Y}_c .

Conclusion

Summary

- Novel framework for depth-based anomaly detection in Markov data
- Overcomes limitations of traditional methods for sequential data
- Strong theoretical guarantees with practical implementation
- Linear scaling with trajectory length
- Superior performance across different types of anomalies

Thank you for your attention!

Code: github.com/carlosds731/depth_markov

Paper: arxiv.org/abs/2406.16759