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Background and Notations

PX : distribution of r.v. X in Rd

P(Rd): set of all probability distributions on Rd

T: set of finite length sequences of elements in Rd

X = (X0,X1, . . .): Harris recurrent Markov chain in E ⊆ Rd with
initial distribution ν, kernel Π, stationary distribution µ.

Kernel
The kernel Π rules the one step transitions of the chain, that is

∀x ∈ Rd ,A ∈ B(E ), P(Xn+1 ∈ A|Xn = x) = Π(x ,A) = Πx (A),

i.e.
P(Xn+1|Xn) = ΠXn .
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Depth Functions on Rd

Definition
A depth function in Rd with respect to a probability distribution
P ∈ P(Rd) is a function DP : Rd → [0, 1] that satisfies (most of) the
following properties:

P1 (Affine invariance)
DPAX+b (Ax + b) = DP(x) for
all x ∈ Rd

P2 (Vanishing at infinity)
DP(x) → 0 as ||x || tends to
infinity

P3 (Maximality at center)
DP is maximized at the center
of symmetry

P4 (Monotonicity)
DP decreases along rays from
the deepest point
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Utility of Depth Functions

Main Applications
Generalizations - Ex: multivariate medians
Robust statistics - Less sensitive to outliers
Outlier detection - Points with low depth are potential outliers
Data ordering - Center-outward ranking
Data visualization - Through depth contours
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Examples of Depth functions

Halfspace depth
For any x ∈ Rd denote by Hx the collection of all halfspaces that contain
x , then, the Halfspace depth is defined as

Dh(x ,P) = inf
H∈Hx

P(H)

Other examples include Simplicial depth, Mahalanobis depth, Leans depth,
IRW depth ...
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Motivation

Main Objectives
Develop computationally feasible tools for assessing the centrality (or
outlyingness) of finite length trajectories w.r.t. the distribution of a
Markov chain X.

Main Challenges
The set of finite length trajectories (T) is infinite dimensional
Its topology (T ) is not metrizable
Even with fixed-length trajectories, standard methods suffer from:

Failure to capture the Markovian structure
Curse of dimensionality
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Motivation - A Concrete Example

Reflected Random Walk Model
X0 = x0 ≥ 0 and
Xn+1 = max(0,Xn + Wn) for
n ∈ N where:

Wn = −1.1 × Yn + 1

The Yn’s are i.i.d. exponential
r.v.’s with mean 1.

Notice that
If Xn+1 > Xn, then Xn+1 − Xn ≤ 1.

Figure: Unfeasible trajectory (red) vs.
regular ones (green/orange)
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Limitations of Standard Approaches

Figure: Lens depth density Figure: Mahalanobis depth density

Key Limitations
They fail to account for the sequential structure and temporal
dynamics of Markov data.
The computational complexity of the best methods generally
increases exponentially with n.
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Markovian Depth Functions

Definition
A statistical depth function w.r.t. the distribution of a Markov chain X is
a function DX : T → [0, 1] that may satisfy:

MO (Initial Law Independence) If X and X′ have the same
transition kernel:

DX(x) = DX′(x)

M1 (Affine Invariance) For any non-singular A and b ∈ Rd :

DAX+b(Ax + b) = DX(x)

.M2 (Vanishing at Infinity) DX(x) → 0 as x "tends to infinity" in T’s
topology
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Markovian Sample Path Depth

Key Idea
Given a depth function D on Rd , we define the Markovian sample path
depth as:

∀x = (x0, . . . , xn) ∈ T, DΠ(x) = n

√√√√ n∏
i=1

DΠxi−1
(xi)
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Markovian Sample Path Depth

Key Idea
Given a depth function D on Rd , we define the Markovian sample path
depth as:

∀x = (x0, . . . , xn) ∈ T, DΠ(x) = n

√√√√ n∏
i=1

DΠxi−1
(xi)

Interpretation
Geometric mean of depths of
one-step transitions
Accounts for Markov
dependency structure
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Key Properties of Markovian Sample Path Depth

Main properties
(M0) Independence from initial law.
(M1) Affine invariance.
(M2) Vanishing at infinity.
Continuity as a function of x.
Continuity as a function of Π
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Asymptotic Results

Theorem (Consistency)
If log(DΠx (y)) is integrable w.r.t. µd(x)Πx (dy) in E 2, then, for any initial
distribution ν,

DΠ(X0, X1, . . . , Xn) → D∞(Π)

Pν-almost surely as n → ∞, where

D∞(Π) = exp
(∫

E2
log (DΠx (y)) Πx (dy)µ(dx)

)
.

Theorem (Asymptotic Normality)
If, in addition, log(DΠx (y)) is square integrable w.r.t. µd(x)Πx (dy), then
DΠ(X0,X1, . . . ,Xn) is asymptotically normal.

Carlos Fernández, Stephan Clémençon Anomaly Detection based on Markov Data July 2nd, 2025 13 / 34



Asymptotic Results

Theorem (Consistency)
If log(DΠx (y)) is integrable w.r.t. µd(x)Πx (dy) in E 2, then, for any initial
distribution ν,

DΠ(X0, X1, . . . , Xn) → D∞(Π)

Pν-almost surely as n → ∞, where

D∞(Π) = exp
(∫

E2
log (DΠx (y)) Πx (dy)µ(dx)

)
.

Theorem (Asymptotic Normality)
If, in addition, log(DΠx (y)) is square integrable w.r.t. µd(x)Πx (dy), then
DΠ(X0,X1, . . . ,Xn) is asymptotically normal.

Carlos Fernández, Stephan Clémençon Anomaly Detection based on Markov Data July 2nd, 2025 13 / 34



Non-Asymptotic Bounds

Theorem (Finite sample inequalities)
Let n ≥ 1 and x ∈ En+1. Consider two transition probabilities Π and Π̂ on
E. Suppose:

1 ∃ε > 0 s.t. min{DΠ̂i
(xi+1),DΠi (xi+1)} > ε for i < n

2 ∃A ⊂ B(Rd) and a finite constant Cd such that:

sup
x∈Rd

|DP(x) − DQ(x)| ≤ Cd ||P − Q||A

Then,
|DΠ(x) − DΠ̂(x)| ≤ 7

4Cd
DΠ(x)
ε

max
i<n

||Πxi − Π̂xi ||A
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Computational Aspects

Algorithm: Estimation of DΠ̂(x)
Input:

Path x = (x0, . . . , xn)
Transition probability Π̂ (an estimator of the true Π)
Precision control integer M ≥ 1

Steps:
For i = 0 to n − 1:

1 Generate M samples x1,i , . . . , xM,i from Π̂xi

2 Compute D̂i of DΠ̂xi
(xi+1)

Output: DΠ̂(x) = n
√∏n

i=1 D̂i
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Computational Aspects

Main advantages
We can use efficient algorithms to obtain Π̂. Ex. Nadaraya-Watson.
The loop can be executed in parallel.
The complexity is linear on n.
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Applications: Anomaly detection

GI/G/1 Queuing System
Consider a GI/G/1 queuing system with:

Interarrival times {Tn}n≥0 i.i.d. exponential with mean 0.5
Service times {Vn}n≥0 i.i.d. exponential with mean 0.45
{Tn} and {Vn} are independent sequences

Waiting time process: Xn+1 = max(0,Xn + Wn) where Wn = Vn − Tn

This corresponds to the reflected random walk model introduced
earlier
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Applications: Experimental Setup

Dataset construction
Training data:

One long trajectory (n = 1000) from normal system behavior
Used to learn the transition kernel of the Markov chain

Testing data:
Four contaminated datasets, each focused on one anomaly type
Each dataset contains 200 paths of random length (50-200)
50% of paths contain the specific anomaly

Anomaly detection
1 Obtain an estimator Π̂ of the kernel Π using the long trajectory.
2 Apply the algorithm to estimate DΠ using the halfspace depth.
3 Use this estimation as the scoring function.
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Anomaly 1: Shock Anomaly

Service Time Shock
Generated by increasing the
service time distribution mean
Normal system: Vn ∼
Exponential(mean = 0.45)
Anomaly segment: Vn ∼
Exponential(mean = 2.25)
The anomaly starts at a
random time and affects 10%
of the trajectory.
Results in sudden spikes in
waiting times

Figure: Service time shock
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Anomaly 2: Dynamic anomaly

Faster Customer Arrivals
Changes the interarrival time
distribution
Normal:
Tn ∼ Exp(mean = 0.5)
Anomaly:
Tn ∼ Exp(mean = 0.1)
The anomaly starts at a
random time and affects 20%
of the trajectory.
Simulates period of increased
customer arrivals

Figure: Faster arrivals
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Anomaly 3: Dynamic anomaly

Slower service times
Modifies service time
distribution
Normal:
Vn ∼ Exp(mean = 0.45)
Anomaly: Vn ∼ 0.55 · U(0, 2)
The anomaly starts at a
random time and affects 30%
of the trajectory
Represents period of degraded
service

Figure: Slower service
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Anomaly 4: Shift anomaly

Deterministic arrivals
Changes arrival process from
stochastic to deterministic
Normal:
Tn ∼ Exponential(mean = 0.5)
Anomaly: Tn = 2−n

(deterministic function)
The anomaly starts at a
random time and affects 25
consecutive steps.
Represents systematic rather
than random arrivals

Figure: Deterministic arrivals
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Detection Performance - ROC Curves

Figure: Service time shock Figure: Faster arrivals
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Detection Performance (cont.)

Figure: Slower service times Figure: Deterministic arrivals
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Method comparison

Comparative Analysis Setup
We compared our Markovian depth (DΠ) against standard methods:

Isolation Forest (IF)
Local Outlier Factor (LOF)
Mahalanobis Depth (MD)

For fair comparison, all trajectories must have equal length
Created 4 datasets (one per anomaly type):

100 trajectories of fixed length (200 points each)
5% contamination rate

Applied all four methods to each dataset
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Method Comparison

Figure: Service time shock Figure: Faster arrivals
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Method Comparison

Figure: Slower service times Figure: Deterministic arrivals
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Method Comparison

Table: Comparison of the AUC for different classifiers.

ARCH(1) model Queuing model

Anomaly type IF LOF MD DΠ IF LOF MD DΠ

Shock 0.75 0.82 0.68 0.85 0.67 0.98 0.44 0.98
Dynamic anomaly I 0.42 0.63 0.52 0.84 0.59 0.80 0.80 0.94
Dynamic anomaly II 0.68 0.90 0.91 0.99 0.64 0.55 0.50 0.85
Shift 1 1 0.6 1 0.93 0.99 0.69 0.98
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Application: Clustering

DD-plots
For two sets of Markov trajectories X = {x1, . . . , xn1} and
Y = {y1, . . . , yn2} with corresponding kernel estimators Φ̂ and Ψ̂, the
Markovian DD-plot is obtained by plotting in the Euclidean plane the
points

{(
DΦ̂(x),DΨ̂(x)

)
: x ∈ X ∪ Y

}
.
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Applications: Clustering

Data generation
5 data sets, each one containing 50 trajectories of random lengths
(between 50 and 200 steps). These datasets, labeled X ,Ya,Yb,Yc ,Yd ,
are constructed following an ARCH(1) model: Xn+1 = m(Xn) + σ(Xn)εn.

Table: Parameters of the ARCH(1) model used

Dataset m(x) σ(x)

X (1 + exp(−x))−1 ψ(x + 1.2) + 1.5ψ(x − 1.2)
Ya (1 + exp(−x))−1 ψ(x + 1.2) + 1.5ψ(x − 1.2)
Yb (2 + exp(−x))−1 ψ(x + 1.2) + 1.5ψ(x − 1.2)
Yc (4 + exp(−x))−1
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Applications: Clustering

Figure: Markovian DD-plot for trajectories X and Ya (same kernel).
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Applications: Clustering

Figure: Markovian DD-plot for trajectories X , and Yb, and Yc .
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Conclusion

Summary
Novel framework for depth-based anomaly detection in Markov data
Overcomes limitations of traditional methods for sequential data
Strong theoretical guarantees with practical implementation
Linear scaling with trajectory length
Superior performance across different types of anomalies
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Thank you for your attention!

Code:
github.com/carlosds731/depth_markov

Paper:
arxiv.org/abs/2406.16759

https://github.com/carlosds731/depth_markov
https://github.com/carlosds731/depth_markov
https://github.com/carlosds731/depth_markov
https://arxiv.org/abs/2406.16759
https://arxiv.org/abs/2406.16759
https://arxiv.org/abs/2406.16759
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