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Introduction : Hidden Markov models 

A characteristic of a Markov chain Si is the homogeneity of the sequence.
⇒ sometimes contradicted by the observations.

To model such situations : 

❖ add an observable layer of variables to the model 
❖ related to the sequence of hidden variables

⇒ Hidden Markov Models (HMM)
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Hidden states : Si

Observations : Xi
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Aim : 
HMM parameters estimation
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Introduction : Parameter estimation

Expectation-Maximisation (EM) algorithm : 
Dempster et al., 1977; Baum and Petrie, 1966; Welch, 2003

Estimation of parameters by a variant of EM 
algorithm : Baum-Welch algorithm.

Direct maximisation of likelihood (DML) : 
Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970

Likelihood maximisation by a quasi-Newton 
type method (L-BFGS-B).

Classical optimisation methods to estimate HMM parameters θ
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Estimation of parameters by a variant of EM 
algorithm : Baum-Welch algorithm.

Direct maximisation of likelihood (DML) : 
Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970

Likelihood maximisation by a quasi-Newton 
type method (L-BFGS-B).

Classical optimisation methods to estimate HMM parameters θ

Hybrid method : 

Creation of QNEM, a mix of EM algorithm 
and a quasi-Newton type method (BFGS).EM acceleration : 

Varadhan and Roland, 2008

SQUAREM method (squared iterative methods).

⇒ Comparison of the 4 methods



❖ Quasi-Newton methods 
➢ maximisation of differentiable scalar 

functions
➢ avoiding computing the Hessian matrix

⇒ approximating the inverse Hessian 
matrix at each iteration

➢ method used : L-BFGS-B (Limited-memory 

Broyden-Fletcher-Goldfarb-Shanno with Bound constraints)

❖ Forward step → likelihood 
→ direct maximisation with L-BFGS-B

❖ 2 possible forward algorithms :
➢ joint probabilities

■ need to compute everything on log 
scale

➢ conditional probabilities

Direct maximisation of the likelihood
Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970
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EM algorithm (Baum-Welch) 
Dempster et al., 1977; Baum and Petrie, 1966; Welch, 2003

E step : knowing θ, compute the 
probabilities of the hidden states along 
the chain given all the observations ⇒ 
forward-backward algorithm

❖ conditional forward algorithm
❖ backward algorithm 
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EM algorithm (Baum-Welch) 
Dempster et al., 1977; Baum and Petrie, 1966; Welch, 2003

E step : knowing θ, compute the 
probabilities of the hidden states along 
the chain given all the observations ⇒ 
forward-backward algorithm

❖ conditional forward algorithm
❖ backward algorithm :

M step : re-estimate θ using these 
probabilities

➢ for each iteration of EM algorithm, 
estimation of the parameter θ for the 
next iteration

➢ if we knew the sequence of hidden 
state, we could compute θ with 
counting

➢ but the hidden states are unknown 
⇒ estimation of θ with probabilities
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SQUAREM
Varadhan and Roland, 2008

❖ SQUAREM = Squared iterative Methods
❖ EM acceleration algorithm
❖ Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM 

Algorithm, Varadhan et al., 2008, Scand. J. Stat.
❖ Aim : maintain the stability of EM while accelerating its convergence speed
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Method : BFGS

❖ Curvature condition : 

with 

and

❖ With a complex line search, this 
condition is always met

❖ If the curvature condition is met, 
Hk stay positive definite
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Proposed method : QNEM

❖ Simple line search = backtracking 
(Armijo condition)

❖ If the curvature condition is not 
met ⇒ switch to EM
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Example overview
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Umbrella example : 

Toy example : weather forecast 
based on the presence of an 
umbrella

→ 2 hidden states
→ discrete observations 
     (2 values)
→ N = 56

Geyser example : 

Example based on open access 
data “Old Faithful Geyser” : 
chain on the duration of geyser 
eruptions
→ N = 272

2 sub-examples : 

● dichotomised times :
→ 3 hidden states
→ discrete observations 
     (2 values)

● continuous times : 
→ 3 hidden states
→ continuous observations

Genetics example : 

Motivating problem for this 
work (part of my PhD) : 
identification of homozygous 
segments. Data simulated from 
1006 european HGDP-CEPH 
(Human Genome Diversity 
Project) haplotypes.

→ 2 hidden states
→ discrete observations 
    (3 values)
→ N = 1050



Umbrella example : 

Toy example : weather forecast 
based on the presence of an 
umbrella

→ 2 hidden states
→ discrete observations 
     (2 values)
→ N = 56
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Hidden states : Si ∊ {Dry ; Rainy}

Observations : Xi ∊ {No umbrella ; Umbrella}

S1 Si-1 Si SL

X1 Xi-1 Xi XL



Results : Umbrella example
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The mean running times are in seconds.
Backward : ~1.7ms
Forward Baum-Welch & SQUAREM : ~0.5ms
Forward quasi-Newton & QNEM : ~1.1ms



Results : Umbrella example
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Log-likelihood with 100 convergence points



Context : Geyser example
Zucchini, 2009
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Plot of dichotomised geyser eruptions’ durations along time. 
“1” code for eruption shorter than 3 minutes.
“2” code for eruption longer than 3 minutes.

Long

Short

Steady long
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Geyser example : 

Example based on open access 
data “Old Faithful Geyser” : 
chain on the duration of geyser 
eruptions
→ N = 272

2 sub-examples : 

● dichotomised times :
→ 3 hidden states
→ discrete observations 
     (2 values)

● continuous times : 
→ 3 hidden states
→ continuous observations

Hidden states : Si ∊ {Short ; Long ; Steady long}

Observations : Xi ∊ {Duration < 3 min ; Duration > 3 min}

S1 Si-1 Si SL

X1 Xi-1 XLXi



Results : Dichotomised geyser example
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The mean running times are in seconds.
Backward : ~8ms
Forward Baum-Welch & SQUAREM : ~1.5ms
Forward quasi-Newton & QNEM : ~11.5ms



Results : Dichotomised geyser example
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Geyser example : 

Example based on open access 
data “Old Faithful Geyser” : 
chain on the duration of geyser 
eruptions
→ N = 272

2 sub-examples : 

● dichotomised times :
→ 3 hidden states
→ discrete observations 
     (2 values)

● continuous times : 
→ 3 hidden states
→ continuous observations

The emission densities are the Gaussian densities 
with parameters µx and σx for state x.

Hidden states : Si ∊ {Short ; Long ; Steady long}

Observations : Xi ∊ [Duration]

S1 Si-1 Si SL

X1 Xi-1 XLXi



Results : Continuous geyser example
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The mean running times are in seconds.
Backward : ~8ms
Forward Baum-Welch & SQUAREM : ~1.5ms
Forward quasi-Newton & QNEM : ~17.4ms



Results : Continuous geyser example
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Context : Genetics example

❖ Identification of rare recessive variants involved 
in multifactorial disease

❖ Analysis on consanguineous individuals 
(offspring of relatives), which are more likely to 
carry this type of variants

❖ Inbreeding coefficient f : probability that 2 
alleles at a locus drawn in an individual’s 
genome are identical and come from a common 
ancestor to his parents

38

Genealogy of an offspring of first cousins

HBD



Context : Genetics example

❖ In absence of family data : identified through his 
genome which carries long homozygous segments 
: HBD segments

❖ We introduce a as : the mean length of HBD 
segments is 1/(a(1- f)) and the mean length of 
non-HBD segments is 1/(af) (in cM)

❖ HBD segments inference ⇒ Hidden Markov 
model (HMM)
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Genealogy of an offspring of first cousins

HBD



non-HBD HBD non-HBD HBD non-HBD

Bb Bb Bb bb BB Bb Bb  bb bb  Bb BB BB Bb Bb Bb  bb bb bb bb bb bb bb  Bb BBObserved:

Hidden:

H
M
M

Hidden states : Si ∊ {non-HBD ; HBD}

Observations : Xi ∊ {BB ; Bb ; bb ; NA}

S1 Si-1 Si SL

X1 Xi-1 Xi XL



Genetics example : 

Motivating problem for this 
work (part of my PhD) : 
identification of homozygous 
segments. Data simulated from 
1006 european HGDP-CEPH 
(Human Genome Diversity 
Project) haplotypes.

→ 2 hidden states
→ discrete observations 
    (3 values)
→ N = 1050
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Hidden states : Si ∊ {non-HBD ; HBD}

Observations : Xi ∊ {BB ; Bb ; bb ; NA}

S1 Si-1 Si SL

X1 Xi-1 Xi XL



Results : HBD segments example
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The mean running times are in seconds.
Backward : ~30.3ms
Forward Baum-Welch & SQUAREM : ~5.3ms
Forward quasi-Newton & QNEM : ~20.2ms



Conclusion & discussion

● Proposed QNEM ⇒ take advantage of Expectation-Maximisation algorithm 
and Direct maximisation of the likelihood
○ Expectation-Maximisation algorithm : Baum-Welch algorithm 

■ + stay close to the solution
■ - takes time to converge

○ Direct maximisation of the likelihood : quasi-Newton algorithm
■ + converge faster
■ - needs proper initialisation

● Evaluated SQUAREM to measure the extent of the acceleration 
● QNEM showed the best results in all example except continuous geyser 

example where EM / SQUAREM are best
● For genetics example quasi-Newton algorithm and QNEM are equivalent
● No uniformly better algorithm

○ speed of convergence
○ global vs. local maximum
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QNEM availability

Submitted article (under revision) to 
Journal of Computational and Applied 
Mathematics 

⇒ preprint available in HAL : 
https://hal.science/hal-04685772v2 

To preprint
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QNEM implemented in R

⇒ R package steveHMM available on 
GitHub : 
https://github.com/SidonieFoulon/steveHMM 

To R package

sidonie.foulon@inserm.fr

https://hal.science/hal-04685772v2
https://github.com/SidonieFoulon/steveHMM
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Introduction : From Markov models …

A sequence of random variables measured at successive moments Si is a Markov chain if it satisfies 
the Markov property : 

★ to predict all the Si subsequent to the time t, the information collected for i ≤ t is completely 
included in the single value St

★ Si’s are not independent
★ Si’s are independent conditionally on the previous observations

47
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Introduction : From Markov models …

Chain is stationary if : { S1+d, …, St+d } follow the same distribution as { S1, …, St }

Homogeneity of the sequence :

❖ Markov chain converge fast to this stationary distribution
❖ transition probabilities  are identical in every point of the sequence

➢ sometimes contradicted by the observations
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Introduction : … to Hidden Markov models 

To model such situations : 

❖ add an observable layer of variables to the model 
❖ related to the sequence of hidden variables

⇒ Hidden Markov Models (HMM)

➔ ex : proportion of homozygous genotypes is almost 1 in HBD segments unlike the rest of the genome
◆ HMM to reconstruct an hidden information (HBD segments) from an observable information (genotypes)
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Hidden states : Si ∊ {Rainy ; Dry}

Observations : Xi ∊ {Umbrella ; No umbrella}

S1 S2 SL-1 SL

X1 X2 XL-1 XL



Thesis context

❖ Identification of rare recessive 
variants involved in multifactorial 
disease

❖ Analysis on consanguineous 
individuals (offspring of relatives), 
which are more likely to carry this 
type of variants

❖ Inbreeding coefficient f : 
probability that 2 alleles at a locus 
drawn in an individual’s genome are 
identical and come from a common 
ancestor to his parents

❖ In absence of family data : identified 
through his genome which carries 
long homozygous segments : HBD 
segments

❖ We introduce a as : the mean length 
of HBD segments is 1/(a(1- f)) and the 
mean length of non-HBD segments is 
1/(af) (in cM)

❖ HBD segments inference ⇒ Hidden 
Markov model (HMM)

Representation of the HBD segments in the chromosome 8 of a 
consanguineous individual

non-HBD HBD non-HBD HBD non-HBD

Bb bb BB Bb Bb Bb bb bb BB BB Bb Bb Bb Bb bb bb bb bb bb bb BB BbObserved :

Hidden :
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Methods : EM algorithm

E step : knowing θ, compute the probabilities of the hidden states along the chain knowing all the observations

⇒ forward-backward algorithm

● Forward initialize with 𝛂i(s) = P𝛉(S1 = s).
Then for each position i ∊ {2,...,L}, compute : 
○ 𝛂i(s) = P𝛉(Si = s | X1,...,Xi-1)
○ 𝛃i(s) = P𝛉(Si = s | X1,...,Xi)

M step : re-estimate θ using these probabilities

The likelihood of 𝛉 is :

L(𝛉 ; S = s, X = x) = P𝛉(S1 = s1) ⦁ P𝛉(S2 = s2 | S1 = s1) ⦁ … ⦁ P𝛉(SL = sL | SL-1 = sL-1-) 
         ⦁ P𝛉(X1 = x1 | S1 = s1) ⦁ … ⦁ P𝛉(XL = xL | SL = sL)

➔ l(𝛉 ; S = s, X = x) = log P𝛉(S1 = s1) + log P𝛉(S2 = s2 | S1 = s1) + … + log P𝛉(SL = sL | SL-1 = sL-1-) 
        + log P𝛉(X1 = x1 | S1 = s1) + … + log P𝛉(XL = xL | SL = sL)

Expected value of the log-likelihood : 

➔ Q(𝛉 ; 𝛉(w)) = E( l(𝛉 ; S = s, X = x) | 𝛉(w)) 
      = Σs log P𝛉(S1 = s) ⦁ 𝛗1(s) + Σs,t log P𝛉(S2 = t | S1 = s) ⦁ 𝛅2(s,t) + … + Σs,t log P𝛉(SL = t | SL-1 = s) ⦁ 𝛅L(s,t) 
         + Σs log P𝛉(X1 = x1 | S1 = s) ⦁ 𝛗1(s) + … + Σs log P𝛉(XL = xL | SL = s) ⦁ 𝛗L(s)

● Backward initialize with 𝛗L(s) = 𝛃L(s). 
Then for each position i ∊ {L-1,...,1}, compute :
○ 𝛅i(s,t) = P𝛉(Si-1 = s, Si = t | X)
○ 𝛗i(s) = P𝛉(Si = s | X)

to maximise
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Pseudo code SQUAREM

Pseudocode : 

1. Initialise with θ0

2. 2 EM iterations ⇒ θ1 et θ2

3. r = (θ0 - θ1)
4. v = (θ2 - θ1) - r
5. Compute step length : norm ratio of r and v
6. Estimate θ’ : with θ0, step length, r and v
7. Update θ0 with EM(θ’)
8. Check convergence

a. go back to 1.
b. or stop
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Umbrella example
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Dichotomised geyser example
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Continuous geyser example
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