Piecewise Deterministic Markov Processes and Bacterial Growth

B. Cloez, B. De Saporta, M. Doumic, M. Hoffmann, N. K., L. Robert , T. Roget and Emeline Schmisser

Montpellier, INRIA, Dauphine, Rennes 2, INRA, Lille

MaSeMo, 1st July, 2025

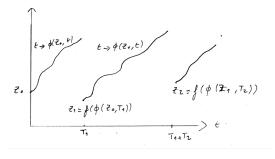
Table of contents

A SPECIFICAL CLASS OF PDMP PRESENTATION OF THE PROBLEM

CELL DIVISION STRUCTURED MODELS
PRESENTATION OF THE MODEL
LINK WITH THE PDMP

STATISTICAL ESTIMATION IN THE MICROSCOPIC MODEL

The PDMP $(X(t))_{t\geq 0}$ depends on the jump rate λ , the flow ϕ and a deterministic increasing function f.



$$\mathbb{P}_{\mathsf{x}}(T_1 > t) = e^{-\int_0^t \lambda(\phi(\mathsf{x},s))ds}$$

and Z_i the post jump location after the *i*-th jump. BK. ESAIM: P.S. 2016.

Some references

Fujii Journal of Applied Probability 2013.

Azaïs, Dufour, Gégout-Petit. Scand. J. Stat. 2014.

Bouguet. ESAIM: P.S. 2015.

Azaïs, Muller-Gueudin. Electron. J. Stat. 2016.

Azaïs, Genadot. Comm. Statist. Theory Methods. 2018.

Azaïs, and Denis arXiv 2025.

Figure: Exemples of simulations of processes (X) et (Z_k) for f(x) = x/2

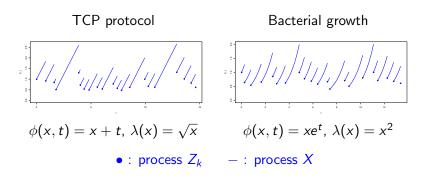


Table of contents

A Specifical class of PDMP

Presentation of the problem

STATISTICAL ESTIMATION

CELL DIVISION STRUCTURED MODELS
PRESENTATION OF THE MODEL
LINK WITH THE PDMP
STATISTICAL ESTIMATION IN THE MICROSCOPIC MODEL
TO GO FUTHER

Statistical estimation

 To the Piecewise Deterministic Markov processes, we associate the microscopic model

$$(Z_n, T_n, n \in \mathbb{N}).$$

- The dynamic is determined by the jump rate $\lambda(x)$, the flow ϕ , and the division function f.
- We want to estimate nonparametrically $x \rightsquigarrow \lambda(x)$.
- We observe the process until its *n*-th jump.
- Observation scheme

$$\left\{ (Z_i, T_i), i \leq n. \right\}$$

• Asymptotics taken as $n \to \infty$.

Statistical estimation

We have

$$\mathbb{P}(T_n \in [t, t+dt] | T_n \ge t, Z_n = x) = \lambda(\phi(x, t))dt$$

from which we obtain the density of the jump time T_n conditional on $Z_n = x$:

$$t \rightsquigarrow \lambda(\phi(x,t)) \exp\Big(-\int_0^t \lambda(\phi(x,v)) dv\Big).$$

The explicit transition

• Using $Z_{n+1} = f(\phi(Z_n, T_n))$, we further infer

$$\mathcal{P}_{\lambda}(x,y) = \lambda(f^{-1}(y))e^{-\int_{f(x)}^{y} \lambda(f^{-1}(s))g_{x}(s)ds}g_{x}(y)\mathbb{1}_{\{y \geq f(x)\}}$$

where

$$g_{\mathsf{x}}(y) = \left[\left(f \circ \phi_{\mathsf{x}} \right)' \left(\left(f \circ \phi_{\mathsf{x}} \right)^{-1} (y) \right) \right]^{-1}$$

and
$$\phi_x(.) := \phi(x,.)$$
.

• Under appropriate condition on λ , the Markov chain on \mathbb{R}^+ is geometrically ergodic. (It is however not reversible.)

Some references

Bertrand Cloez. Arxiv. 2012.

Bardet, Christen, Guillin, Malrieu, and Zitt. Electron. J. Probab. 2013.

Bouguet. ESAIM: PS. 2015.

Identifying λ through the invariant measure

- Under some assumptions, we have existence (and uniqueness) of an invariant measure on \mathbb{R}^+ , *i.e.* such that $\nu_B \mathcal{P}_B = \nu_B$.
- More precisely, we have a contraction property

$$\sup_{|g| \le V} \left| \mathcal{P}_{\lambda}^k g(\mathbf{x}) - \int g(\mathbf{z}) \nu_{\lambda}(d\mathbf{z}) \right| \le RV(\mathbf{x}) \gamma^k$$

uniformly in $\lambda \in \mathcal{E}$, for an appropriate Lyapunov function V.

Identifying λ through the invariant measure

$$\nu_{\lambda}(y) = \int_{E} \nu_{\lambda}(x) \mathcal{P}_{\lambda}(x, y) \mathbb{1}_{\{f(x) \leq y\}} dx$$

$$= \int_{E} \nu_{\lambda}(x) \lambda(f^{-1}(y)) e^{-\int_{f(x)}^{y} \lambda(f^{-1}(s)) g_{x}(s) ds} g_{x}(y) \mathbb{1}_{\{f(x) \leq y\}} dx$$

thank to "Survival analysis trick"

$$e^{-\int_{f(x)}^{y} \lambda(f^{-1}(s))g_{x}(s)ds} = \int_{y}^{\infty} \lambda(f^{-1}(s))g_{x}(s)e^{-\int_{f(x)}^{s} \lambda(f^{-1}(s'))g_{x}(s')ds'}ds$$

and as we recognize $\mathcal{P}_{\lambda}...$ We obtain

$$\nu_{\lambda}(y) = \lambda(f^{-1}(y)) \int_{E} \nu_{\lambda}(x) g_{x}(y) \mathbb{1}_{\{f(x) \leq y\}} \int_{y}^{\infty} \mathbb{1}_{\{s \geq y\}} \mathcal{P}_{\lambda}(x, s) ds dx$$

Thus

$$\nu_{\lambda}(y) = \lambda(f^{-1}(y)) \mathbb{E}_{\nu_{\lambda}}[g_{Z_0}(y) \mathbb{1}_{\{f(Z_0) \le y\}} \mathbb{1}_{\{Z_1 \ge y\}}]$$

Key representation

We conclude

$$\lambda(y) = \frac{\nu_{\lambda}(f(y))}{\mathbb{E}_{\nu_{\lambda}}[g_{Z_{0}}(f(y))1_{\{f(Z_{0}) \leq f(y)\}}1_{\{Z_{1} \geq f(y)\}}]},$$

We consider an orthonormal basis (φ_I) of S_m . Let us set

$$a_I = \langle \varphi_I, \nu_{\lambda} \rangle = \int_{\mathcal{A}} \varphi_I(x) \nu_{\lambda}(x) dx$$
 and $\nu_m(x) = \sum_{I=1}^{D_m} a_I \varphi_I(x)$.

The function ν_m is the orthogonal projection of ν_{λ} on $L^2(\mathcal{A})$. We consider the estimator

$$\hat{\nu}_m(x) = \sum_{l=1}^{D_m} \hat{a}_l \varphi_l(x)$$
 with $\hat{a}_l = \frac{1}{n} \sum_{k=1}^n \varphi_l(Z_k)$.

Proposition

If $D_m^2 \leq$ n, under some assumptions, for any $\lambda \in \mathcal{F}(\mathfrak{c},b)$,

$$\mathbb{E}\left(\left\|\hat{\nu}_{m}-\nu_{\lambda}\right\|_{L^{2}(\mathcal{A})}^{2}\right)\leq\left\|\nu_{m}-\nu_{\lambda}\right\|_{L^{2}(\mathcal{A})}^{2}+C_{\mathfrak{c},b}\frac{D_{m}}{n}+\frac{c_{\mathfrak{c},b}}{n}$$

$$\hat{\mathbf{D}}_n(y) := \frac{1}{n} \sum_{k=1}^n g_{Z_{k-1}}(f(y)) \mathbb{1}_{Z_k \ge f(y), y \ge Z_{k-1}}.$$

We can now consider the estimator

$$\hat{\lambda}_n(y) = \frac{\hat{\nu}_{\hat{m}}(f(y))}{\hat{\mathbf{D}}_n(y)} \mathbb{1}_{\hat{\nu}_{\hat{m}}(f(y)) \ge 0} \mathbb{1}_{\hat{\mathbf{D}}_n(y) \ge \ln(n)^{-1}}.$$
 (1)

Theorem

Under some assumptions as soon as $\ln(n)^{-1} \leq D_0/2$, for any $\lambda \in \mathcal{E}(\overline{\mathfrak{c}},b)$,

$$\mathbb{E}\left(\left\|\hat{\lambda}_n - \lambda\right\|_{L^2(\mathcal{I})}^2\right) \leq C_{\mathfrak{c},b} \ln^2(n) \left(\mathbb{E}\left(\left\|\hat{\nu}_{\lambda} - \nu_{\lambda}\right\|_{L^2(f(I))}^2\right) + \frac{1}{n}\right).$$

$$\sup_{\lambda \in \mathcal{E}(\bar{\mathfrak{e}},b) \cap H^{\alpha}(M_{1},\mathcal{I})} \mathbb{E}\left(\left\|\hat{\lambda}_{n} - \lambda\right\|_{L^{2}(\mathcal{I})}^{2}\right) \lesssim \ln^{2}(n) n^{-2\alpha/(2\alpha+1)}.$$

➡K., Schmisser. Bernoulli. 2021.

Theorem (Minimax bound)

Under some assumptions, we get

$$\inf_{\hat{\lambda}_n} \sup_{\lambda \in \mathcal{E}(\bar{\mathfrak{c}},b) \cap H^{\alpha}(\mathcal{I},M_1)} \mathbb{E}\left(\left\|\hat{\lambda}_n - \lambda\right\|_{L^2(\mathcal{I})}^2\right) \geq C n^{-2\alpha/(2\alpha+1)}.$$

where the infimum is taken among all estimators.

K., Schmisser. Bernoulli. 2021.

Table of contents

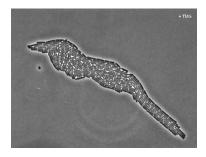
A SPECIFICAL CLASS OF PDMP

Presentation of the problem Statistical estimation

CELL DIVISION STRUCTURED MODELS

Presentation of the model

LINK WITH THE PDMP STATISTICAL ESTIMATION IN THE MICROSCOPIC MODEL TO GO FUTHER The data set of Stewart (2005) is the evolution of 88 microcolonies of *E. Coli* bacteria cultures.



Direct observations

The exponential growth for Bacteria is now, after much debate, commonly admitted:

$$x_t = x_0 e^{\tau t}$$
.

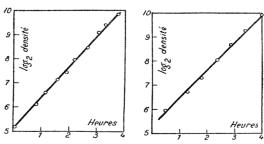


Fig. 10. — Phase exponentielle de la croissance d'une culture de B. coli en milieu synthétique, avec 300 mgr. par l. de glucose. Coordonnées semi-logarithmiques.

Fig. 11. — Phase exponentielle de la croissance d'une culture de *B. subtilis* en milieu synthétique, avec 500 mgr. par l. de saccharose. Coordonnées semi-logarithmiques.

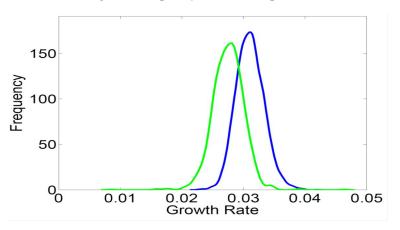
Figure: Monod's 1942 thesis on B. Coli culture cells.

Models assumption:

The division rate B depends on

- size
- age (A. Olivier and M. Hoffmann. SPA. 2016.)
- nothing
- the increment of size (Adder model)
- and/or previous elements and/or something else...
- Doumic, Hoffmann, K., Robert, Aymerich et Robert. BMC Biology. 2014.

Variability among exponential growth rates



In a first approach, we ignore variability and assume a constant τ for all cells.

Delyon, de Saporta, K., Robert. CSBIGS. 2018.

Table of contents

A SPECIFICAL CLASS OF PDMP PRESENTATION OF THE PROBLEM STATISTICAL ESTIMATION

CELL DIVISION STRUCTURED MODELS

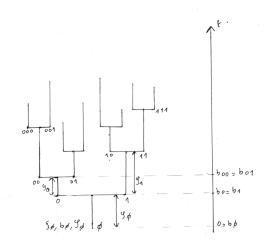
PRESENTATION OF THE MODEL LINK WITH THE PDMP

STATISTICAL ESTIMATION IN THE MICROSCOPIC MODEL TO GO FUTHER

The microscopic approach: constant growth rate

- Initially a singe cell of size x_0 .
- Exponential growth $x_t = x_0 e^{\tau t}$.
- Two offsprings, at a rate $B(x_t)$. Division occurs at time T.
- The two offsprings have initial size $x_T/2$.
- And so on...

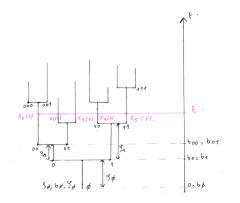
Figure: Random marked tree



 ξ_u the birth size b_u the birth time ζ_u the life time $u \in \{\emptyset, 0, 1, 00, 01, 10, 11, 000, ...\}$.

The microscopic approach (cont.)

 $X(t) = (X_1(t), X_2(t), \dots)$ process of the sizes of the population at time t.



$$X_1(t) = \xi_{00}e^{\tau(t-b_{00})}$$
 ... $X_5(t) = \xi_{11}e^{\tau(t-b_{11})}$ ξ_u the birth size b_u the birth time ζ_u the life time

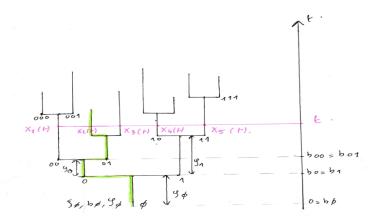
Main probabilistic tools

- Branching property
- Mass (size) conservation:

$$\sum_{i} X_i(t) = x_0 e^{\tau t}.$$

The tagged fragment approach

Pick a cell at random at each division and follow its size $\chi(t)$ through time. Inspired from fragmentation processes techniques (Bertoin, Haas, among others).



The tagged fragment approach

$$\chi(t) = x_0 \frac{e^{\tau t}}{2^{N_t}}$$

where N_t is the number of divisions of the tagged fragment up to time t.

- $\chi(t)$ is a PDMP
- This enables to obtain a many-to-one formula.

A many-to-one formula

- Exists in other contexts for Branching Markov processes in a general setting (e.g. Bansaye et al., 2009, Cloez, 2011).
- We have,

$$\mathbb{E}\Big[f\big(\chi(t)\big)\Big] = \mathbb{E}\Big[\sum_{i} X_{i}(t) \frac{e^{-\tau t}}{x_{0}} f\big(X_{i}(t)\big)\Big]$$

from which we obtain

$$\mathbb{E}\left[\frac{f(\chi(t))}{\chi(t)}x_0e^{\tau t}\right] = \mathbb{E}\left[\sum_i f(X_i(t))\right].$$

Transport-fragmentation equation

The mean empirical distribution

$$\partial_t n_t(x) + \partial_x (\tau x n_t(x)) + B(x) n_t(x) = 4B(2x) n_t(2x)$$

with
$$\langle n_t, f \rangle := \mathbb{E} \big[\sum_{i=1}^{\infty} f \big(X_i(t) \big) \big].$$

Main results of the global approach

In Doumic, Hoffmann, Rivoirard and Reynaud-Bouret SIAM J. Numer. Anal. 2012, if $B \in \mathcal{H}^s$, we have

$$\left(\mathbb{E}\big[\|\widehat{B}_n - B\|_{L^2(\mathcal{D})}^2\big]\right)^{1/2} \lesssim n^{-s/(2s+3)}.$$

This rate is provably min-max optimal.

Incorporating variability

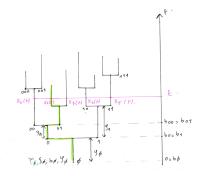
To each cell labeled by u, we associate a random growth rate

$$\tau_u \in [e_{\mathsf{min}}, e_{\mathsf{max}}].$$

• Conditional on τ_{u-} , the variability is distributed according to a (nice) Markov kernel

$$\rho(\tau_{u-}, d\tau_u)$$
.

Figure: Random marked tree



$$\xi_u$$
 the size b_u the birth time ζ_u the life time τ_u the growth rate $X_1(t) = \xi_{00} e^{\tau_{00}(t-b_{00})}$ $Z_1(t) = \tau_{00}$

The corresponding many-to-one formula

- \mathcal{G}_t : the cumulate growth rate of the tagged-fragment.
- The many-to-one formula becomes

$$\mathbb{E}\left[\frac{f(\chi(t),\tilde{Z}(t))}{\chi(t)}x_0e^{\mathcal{G}_t}\right] = \mathbb{E}\left[\sum_{i=1}^{\infty}f(X_i(t),Z_i(t))\right].$$

where $\tilde{Z}(t)$ is the instantaneous growth rate of the tagged fragment.

• $(\chi(t), \tilde{Z}(t))$ is a PDMP

What of the transport-fragmentation PDE?

The mean empirical distribution

$$\begin{split} \partial_t n_t(x,\textbf{a}) + \textbf{a} \, \partial_x \big(x n_t(x,\textbf{a})\big) + B(x) n_t(x,\textbf{a}) \\ &= 4 \int_{\mathbb{R}_+} \rho(\textbf{a}',\textbf{a}) n_t(2x,\textbf{a}') d\textbf{a}'. \end{split}$$
 with $\langle n_t, f(\cdot,\cdot) \rangle := \mathbb{E} \Big[\sum_{i=1}^\infty f\big(X_i(t), Z_i(t)\big) \Big]. \end{split}$

Table of contents

A SPECIFICAL CLASS OF PDMP
PRESENTATION OF THE PROBLEM
STATISTICAL ESTIMATION

CELL DIVISION STRUCTURED MODELS

PRESENTATION OF THE MODEL
LINK WITH THE PDMP
STATISTICAL ESTIMATION IN THE MICROSCOPIC MODEL

To go Futher

Statistical estimation

- The dynamic is determined by the division rate B(x) and the variability kernel $\rho(a, da')$ (and an initial condition $(\xi_{\emptyset}, \tau_{\emptyset})$.)
- Observation scheme

$$\{(\xi_u,\zeta_u,\tau_u), u\in\mathcal{U}_n\}$$

with

$$\sharp \mathcal{U}_n = n$$

- Asymptotics taken as $n \to \infty$.
- We want to estimate nonparametrically $x \rightsquigarrow B(x)$.

Key representation

We get

$$B(y) = \frac{y}{2} \frac{\nu_B(y/2)}{\mathbb{E}_{\nu_B}\left[\frac{1}{\tau_u} \mathbf{1}_{\{\xi_u - \leq y, \ \xi_u \geq y/2\}}\right]}.$$

Final estimator

$$\widehat{B}_n(y) = \frac{y}{2} \frac{n^{-1} \sum_{u \in \mathcal{U}_n} K_{h_n}(\xi_u - y/2)}{n^{-1} \sum_{u \in \mathcal{U}_n} \frac{1}{\tau_{u^-}} \mathbf{1}_{\{\xi_{u^-} \le y, \xi_u \ge y/2\}} \bigvee \varpi_n},$$

is specified by a kernel function K, the bandwidth h_n and the threshold ϖ_n .

Proposition

Work under the previous assumptions. Specify

$$h_n = c_0 n^{1/(2s+1)}, \ \varpi_n = (\ln(n))^{-1}.$$

We have

$$\mathbb{E}_{\mu}\big[\|\widehat{B}_n - B\|_{L^2(\mathcal{D})}^2\big]^{1/2} \lesssim (\ln(n))n^{-s/(1+2s)}$$

uniformly in $B \in \mathcal{F} \cap \mathcal{H}^s(\mathcal{D})$.

Doumic, Hoffmann, K., Robert. Bernoulli. 2015.

Numerical implementation

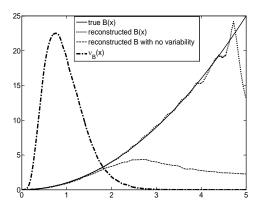


Figure: 100 Monte-Carlo estimations, dense tree case. Target function B(x) = x, $\tau = 1$. Reconstruction for $n = 2^{17}$ and $\varphi = n^{1/2}$.

Table of contents

A SPECIFICAL CLASS OF PDMP
PRESENTATION OF THE PROBLEM
STATISTICAL ESTIMATION

CELL DIVISION STRUCTURED MODELS

PRESENTATION OF THE MODEL
LINK WITH THE PDMP
STATISTICAL ESTIMATION IN THE MICROSCOPIC MODEL

To go Futher

The goal is to generalize what precedes to stick even more to the reality

- take into account the difference between "young" and "old" poles
- look at the Adder models
- allow that division does not give 2 bacteria of the same size

This is a work in progress with Bertrand Cloez, Benoîte de Saporta and Tristan Roget.

Two types.

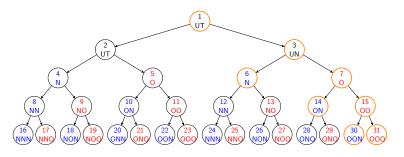
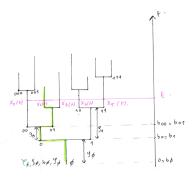


Figure: Cell division binary tree with the type of each cell

Figure: Random marked tree



 ξ_u the size b_u the birth time ζ_u the life time τ_u the growth rate θ_u the proportion of the mother size $X_1(t) = \xi_{00} e^{\tau_{00}(t-b_{00})}$ $Z_1(t) = \tau_0$ $\xi_{00} = \theta_0 \xi_0 e^{\tau_0 \zeta_0}$

The corresponding many-to-one formula

• The many-to-one formula becomes

$$\mathbb{E}\Big[\frac{f\left(\chi(t),\tilde{Z}(t),P(t)\right)}{\chi(t)}x_0e^{\overline{\mathcal{V}}(t)}\Big] = \mathbb{E}\Big[\sum_{i=1}^{\infty}f\left(X_i(t),Z_i(t),P_i(t)\right)\Big].$$
 where $\tilde{Z}(t)$ is the instantaneous growth rate, $\overline{\mathcal{V}}(t)$ accumulated growth rate and $P(t)$ type of the tagged bacterium.

- $(\chi(t), \tilde{Z}(t), P(t))$ is a PDMP
- We then have the representation

$$\chi(t) = x e^{\overline{\mathcal{V}}(t)} \theta_0^{C_0^o} \theta_1^{C_1^t} \tag{2}$$

with C_t^o the number of divisions resulting in a bacterium with a old pole and C_t^1 the one with a new pole.

What of the transport-fragmentation PDE?

The mean empirical distribution

$$\begin{cases}
\partial_{t} n(t,x,v,i) + v \partial_{x} (xn(t,x,v,i)) + B(x)n(t,x,v,i) \\
= \int_{\mathcal{E}} \frac{\phi(x,v',0)}{\theta_{0}^{2}} \rho_{0}(v,dv') B(x/\theta_{0}) n(t,x/\theta_{0},dv',i) \\
+ \int_{\mathcal{E}} \frac{\phi(x,v',1)}{\theta_{1}^{2}} \rho_{1}(v,dv') B(x/\theta_{1}) n(t,x/\theta_{1},dv',i), \\
n(0,x,v,i) = n^{(0)}(x,v,i), x \ge 0.
\end{cases}$$
(3)

with

$$\langle n(t,\cdot),\phi \rangle = \mathbb{E}_{\mu} \Big[\sum_{i=1}^{\infty} \phi \big(X_i(t), Z_i(t), P_i(t) \big) \Big] \text{ for every } \phi \in \mathcal{C}^1_0(\mathcal{S})$$

and $n_i(t, x, v)$ the density of $n_i(t, dx, dv)$.

■K., Proceedings of IWBPA24

Numerical implementation

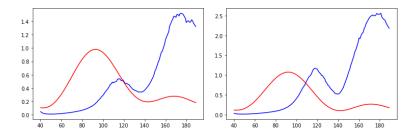


Figure: In red the estimated invariant probability and in blue the estimated division rate. On the left for the old cell and on the right for the young.

- Doumic, M., Hoffmann., M., K., N. and Robert, L. (2015) Statistical inference across scales for size-strutured models under growth variability. Bernoulli, 21, 1760–1799.
- K., N., and Schmisser E. (2021) Nonparametric estimation of jump rates for a specific class of piecewise deterministic Markov processes. Bernoulli, 27(4):2362–2388,
- N. K. Statistical estimation of the jump rate of a special class of PDMPs. ESAIM: PS 20 (2016) 196–216
- B. Cloez, B. de Saporta, N. K. and T. Roget. Model estimation and selection for cell division data. Work in progress.
- N. K. Branching processes and bacterial growth To appear at Proceedings of IWBPA24.