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Framework: percentile finding

Figure: Wheteril and Levitt (1965). Stimulus and response.
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Framework: toxicity of a new drug
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Figure: Response toxicity for 10 different doses.
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Framework: toxicity of a new drug
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Figure: We look for the percentile 0.28
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Framework: toxicity of a new drug

Figure: We consider a design that concentrates allocations around the target
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Framework: percentile finding
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Figure: Our goal is to find the stimulous which is perceived by the Γ percent of
the population.

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 7 / 40



Statement of the problem Asymptotics for Up and Down designs The K-in-a-row design Asymptotic results Discussion

Notation
• The dose space (design space): X

• Permissible doses: X0 = {d1 < d2 < · · · < dM} ⊂ X

• Design: {Xn}n∈N sequence of doses assigned to patients.

• The nth patient response is:

Yn =

{
1 if toxicity ( or efficacy) ;

0 otherwise

• Response function

P(Yn = 1 | Xn = x) = F (x), P(Yn = 0 | Xn = x) = F (x), x ∈ X

Assumption: the toxicity increases with the dose.
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Dose finding designs

Figure: I

• Remains a favored design for phase I trials.(Rogatko et al. Clin.
Canc. Resch,2005)

• The dose chosen has a toxicity rate in [0.16, 0.27] (Ivanova (2006),
Stat. Med.), it can be out of the therapeutical area.
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Dose finding designs: Bayesian methods (CRM)

• Assume as response function

F (x) = P(Yn = 1|Xn = x ; a) = (tanh(x) + 1)a

• Prior distribution for a [exponential, normal, etc]

• A posteriori response distribution F̃

• Next patient assigned to dose d∗, the closest dose to the desired dose:

d∗ = minx∈X0 |F̃ (x) = P(Toxicity |Dose = x)− Γ|

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 10 / 40
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First order Up and down designs

d1 d2 · · · di−1 di di+1 · · · dM−1 dM

q(di )

p(di )p(d1)

q(dM)

1−p(d1) 1−q(dM)r(di )

Figure: Basic structure that represents the dynamics for first order Up and down
designs.

• p(x) is a strictly decreasing function in X .

• In practice: piling up doses in the borders means a bad selection of
permissible doses (a bad design).
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K -in-a-row design. Definition
• When Γ < 0.5, Xn = di , d0 = d1 and dM+1 = dM

Xn+1 =


di−1 if Yn = 1;

di if Yn = 0 and Xn−w ̸= di for some 1 ≤ w < K − 1,

di+1 if Yn = 0 and Xn−K+1 = Xn−K+2 = · · · = Xn = di .

In words

Xn+1 =


One down if toxicity ;

One up if K consecutive non-toxicities;

Stay non-toxicity but less than K consecutive.

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 12 / 40
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First order UD: Stationary distribution

d1 d2 · · · di−1 di di+1 · · · dM−1 dM

q(di )

p(di )p(d1)

q(dM)

1−p(d1) 1−q(dM)r(di )

• As UD design is a regular and finite Markov Chain: there exists a
stationary distribution π = {πi}Mi=1

πi+1 = π1

i∏
j=1

λj , i = 1, . . . , M − 1; π1 =

1 +
M∑
i=2

i−1∏
j=1

λj

−1

. (1)

with

λi =
p(di )

q(di+1)
.
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Unimodality

• As p(x) is decreasing

λi =
p(di )

q(di+1)

↓
↑
=↓ i = 1, . . . , M − 1

• As the sequence {λi}M−1
i=1 is decreasing, π is unimodal.

• Proposition: Let i∗ the smallest integer such that λi∗ ≤ 1, then the
mode is at di∗ , and spans to di∗+1 when λi∗ = 1.

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 14 / 40



Statement of the problem Asymptotics for Up and Down designs The K-in-a-row design Asymptotic results Discussion

The balance point

Definition

The balance point is the dose x∗ ∈ X such that p(x∗) = q(x∗).

Theorem

Consider an UD design with balance point d1 < x∗ < dM . Let

di ′ = mini{di ∈ X0 : di > x∗}

denote the distance between them by ∆ = di ′ − di ′−1; and let
x ′ = argx{p(x) = q(x +∆)}.

The mode of π is d∗ =

{
di ′ if di ′−1 < x ′;

di ′−1 if di ′−1 ∈ (x ′, x∗).
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Example

• Consider Γ ≤ 0.50 and b = Γ/(1− Γ)

p(x) = b[1− F (x)]; r(x) = (1− b)[1− F (x)]; q(x) = F (x)

Then x∗ = F−1(Γ) AND the mode of π will stay close to F−1(Γ)

• This feature makes this family of UD designs (Durham and
Flournoy(1994), Stat. Dec. Theory Rel. topics., conference book)
appropriate for estimating any percentile of F .
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Definition

• When Γ < 0.5, Xn = di , d0 = d1 and dM+1 = dM

Xn+1 =


di−1 if Yn = 1;

di if Yn = 0 and Xn−w ̸= di for some 1 ≤ w < K − 1,

di+1 if Yn = 0 and Xn−K+1 = Xn−K+2 = · · · = Xn = di .

In words, if a toxic response is observed, the next allocation is the
immediately lower permissible dose; otherwise, the same dose is
administered until K consecutive non-toxic responses are observed, after
which the next individual receives the immediately higher permissible dose.

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 17 / 40
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It is not a Markov chain

di−1 di di+1

F (di )

F (di )
KF (di )

Si

Figure: Proxy to explain the K-in-a-row design.

0 ≤ Si < K is a random variable
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A representation of the K-in-a-row

• IF the last s − 1 patients are assigned to di without toxicity responses

d1 d2 · · · di−1 di di+1 · · · dM−1 dM

Fi1s≤K

F i1s=KF 11s=K

FM

F i1s<KF1+F11s<K
FM

Figure: 1A is the indicator function of the event A.
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The K-in-a-row as a semi-Markov process

Subrogated to the process {Xn}n∈N, we define two processes

• Jumping times: Tr = min{n > Tr−1 : Xn ̸= Xn−1}, r ≥ 1., T0 = 1.

• Embedded chain: Zr = XTr , r ≥ 1 points to the dose where Xn arrives
immediately after a jump.

• For any n ≥ 1,
Xn = Zr , Tr ≤ n < Tr+1. (2)

From Chapter 10 in Cinlar, {Zr ,Tr}r≥0 is a homogeneous Markov renewal
process in the state space X0 and, from (2), {Xn}n∈N is a Semi-Markov
process. From Barbu-Limnios, {Xn}n∈N is a Semi-Markov process in
discrete time in the state space X0.

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 20 / 40
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The ”sojourn time” in a dose

• Si number of patients consecutively allocated in the dose di .

P(Tr+1 − Tr = s| XTr = di ) = P(Si = s), i = 1, . . . , M, (3)

• The expectations are

E[Si ] =
1− F

K
i

Fi
; Si ∈ {1, . . . ,K} 2 ≤ i ≤ M − 1 (4)

E[S1] =
1− F

K
1

F1F
K
1

and E[SM ] =
1

FM
S1 and SM unbounded (5)

(Philippou A et al. (1983) Stat. Prob. Lett.)
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The embedded chain

• It is a random walk with reflecting barriers:

d1 d2 · · · di−1 di di+1 · · · dM−1 dM

1− F
K
i

F
K
i1

1− F
K
2

1

F
K
M−1

Proposition

The process {Zr}r∈N is an UDD with balance point x∗. The stationary
distribution {πZ

i }Mi=1 is unimodal.

From now on, x∗ is F (x∗) = 1− 0.51/K .
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Scope of the K-in-a-row

• The balance point is a proxy of the mode’s location

K 1 2 3 4 5 6 7 8 9

1− 0.51/K , Γ ≤ .5 .500 .293 .206 .159 .129 .109 .094 .083 .074

0.51/K , Γ ≥ .5 .500 .707 .794 .841 .871 .891 .906 .917 .926

Table: Quantiles of KR balance points for K =1, . . . , 9. 1− .51/K for Γ ≤ 0.5 and
.51/K for Γ ≥ 0.5.
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The mean time in a dose
• The mean time that, in the stationary setting, the process stays in the
same state

E[S ] =
M∑
i=1

E[Si ]π
Z
i .

• This value appears in the expression of the stationary distribution of the
KR process.

• Observe that for each r ∈ N

E[Tr+1 − Tr ] =
M∑
i=1

E[Tr+1 − Tr | Zr = di ]P(Zr = di )

→ E[S ], r → ∞.

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 24 / 40
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Stationary distribution

• Considering

πi = lim
n→∞

P(Xn = di |X0 = dj), i , j = 1, . . . , M.

Theorem

The process {Xn}n∈N has stationary distribution {πi}Mi=1, where

πi = πZ
i

E[Si ]

E[S ]
, i = 1, . . . , M, (6)

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 25 / 40
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Example

Down-Shifting P[Si = s]

i 1 2 3 4 5 6 7 8 9
Fi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E[Si ] 3.72 2.44 2.19 1.96 1.75 1.56 1.39 1.24 1.11
πZ
i 0.18 0.37 0.29 0.13 0.03 0.004 0.0002 7E-6 6E-8

π 0.271 0.36 0.25 0.1 0.02 0.003 0.0001 3E-6 2E-8

Table: Mean sojourn times in each dose and stationary distributions for the 3R
design and its embedded process. Observe that E[S ] = 2.51.
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Example
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Unimodality

Proposition

For each dose di , i = 1, . . . ,M − 1, the asymptotic adjacent
dose-allocation ratio is

λi =
πi+1

πi
=

Fi
Fi+1

(
F
K
i

1− F
K
i

)
.

Besides, for each i ,

πi = π1

i−1∏
j=1

λj , i = 2, . . . ,M; π1 =

1 +
M∑
i=2

F1
Fi

i−1∏
j=1

F
K
j

1− F
K
j

−1

. (7)
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Dynamics of the K -in-a-row

λi =
ai
ri
, i = 1, · · · ,M − 1

1 The ratio ai is the odds that the embedded chain will increase from
dose di for each i = 1, . . . , M.

ai =
F
K
i

1− F
K
i

is


> 1 if di < x∗;

= 1; if di = x∗;

< 1 if di > x∗.

(8)

2 The toxicity increase factor from di to di+1 is ri = Fi+1/Fi for each
i = 1, . . . ,M − 1. Note that 1/Fi > ri > 1.

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 29 / 40
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Sketch of the proofs

Let r and a be two real values such that r > 0 and a ∈ (0, 1); K ≥ 2.

g1(r) =
r(1− ra)K

1− (1− ra)K

decreasing in r ∈ (1, a−1).

g2(a) = r
a

1− a
(1− a1/K )

increasing in a ∈ (0, 1).

↓ ↓
{λi}M−1

i=1 is strictly decreasing.

Assume λi < λi+1, contradiction
with

ai+1ri =
ri (1− riFi )

K

[1− (1− riFi )K ]

di ∈ χ0, di < x∗ and λi ≤ 1
THEN di+1 ≥ x∗.

Fi+1 = riFi = r

(
a

1− a

)
(1−a1/K )
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Dynamics of the K -in-a-row

λi =
ai
ri

=


> 1 KR tends higher;

= 1; equilibrium;

< 1 KR tends lower.

(9)
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Unimodality

Theorem

Consider the KR Process {Xn}n∈N with space of permissible doses
χ0 = {d1 < . . . , < dM} and

F (d1) < · · · < F (dM)

Then
• The sequence {λi}M−1

i=1 is strictly decreasing.

• The stationary distribution {πi}Mi=1 of {Xn}n∈N is strongly unimodal.
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Location

Theorem

In the same conditions as the previous results, denote

i ′ =

{
M if dM < x∗

min{i : di > x∗} else.

The mode of {πi}Mi=1 is
1. d1 if d1≥x∗;
2. dM if dM≤x∗;
3. di ′−1 if d1 < x∗ ≤ dM and λi ′−1 < 1 ;
4. di ′ if d1 < x∗ ≤ dM and λi ′−1 > 1;
5. πi ′−1 = πi ′ if d1 < x∗ < dM and λi ′−1 = 1.
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{πi} and {πZ
i }

Theorem

Let iZ ∗ and i∗ be the dose indices of the modes of {πZ
i } and {πi},

respectively. Then

i∗ =



iZ∗ − 1 = 1 if d1 > x∗ ⇒
iZ∗ if d1 < diZ∗ < x∗ < dM−1 ⇒
iZ∗ − 1 if d1 < x∗ < diZ∗ < dM−1 ⇒
iZ∗ = M − 1 if dM−1 < x∗ and λM−1 ≤ 1 ⇒
iZ∗ + 1 = M if dM−1 < x∗ and λM−1 > 1 ⇒

di∗ < diZ∗

di∗ = diZ∗

di∗ < diZ∗

di∗ = diZ∗

di∗ > diZ∗

J. Moler1, M. Sada1, N.Flournoy2. (UPNA) 2025 34 / 40
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KR process as a Markov chain: extended state space
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Example K = 2
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Figure: Transition paths in the expanded KR process for K = 2 and M = 5 doses.
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Example K = 2

PE =



i=1 i=2 i=3 i=4 i=5
i w 0 1 0 1 0 1 0 1 0

1 0 F1 F 1 0 0 0 0 0 0 0

1 F1 0 F 1 0 0 0 0 0 0

2 0 F2 0 0 F 2 0 0 0 0 0

1 F2 0 0 0 F 2 0 0 0 0

3 0 0 0 F3 0 0 F 3 0 0 0

1 0 0 F3 0 0 0 F 3 0 0

4 0 0 0 0 0 F4 0 0 F 4 0

1 0 0 0 0 F4 0 0 0 F 4

5 0 0 0 0 0 0 0 F5 0 F 5



(10)
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Stationary distribution

π
(0)
i = π

(0)
1

i−1∏
j=1

λ
(0)
j , i = 2, . . . , M, where λ

(0)
i =


F
K
i

1− F
K
i+1

1 ≤ i ≤ M − 2;

F
K
M−1

FM
i = M − 1;

(11)
Then

π̃i =


π
(0)
1 E[S1]F

K
1 i = 1;

π
(0)
i E[Si ] 2 ≤ i ≤ M − 1;

π
(0)
M i = M;

Finally, 1 =
M∑
i=1

π̃i = π
(0)
i

E[S1]F
K
1 +

M−1∑
i=1

E[Si ]
i−1∏
j=1

λ
(0)
j +

M−1∏
j=1

λ
(0)
j

 .
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Benefits of the SMK

• Provides a more succinct, and more descriptive expression for the
stationary distribution than the Markov chain.

• The unimodality proof only uses [AS1] and, so, does not require
embedding the allocation chain in the continuous dose space X and
explicitly using a continuous response function F . Our proof is closely
related with the evolution of the embedded chain of the semi-Markov
process and the increase ratio of toxicity in [AS1].

• The mode of the stationary distribution of {Xn}n≥1 is explicitly
identified. The conditions of the process to determine exactly the
mode are given. This is better than bounding it as was the most
precision obtained up to now in the literature.
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