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Motivation
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Annual plants dynamics: one patch

» How can we estimate the key parameters of annual plant dynamics
based only on observations on standing flora?

» Dormancy: seed survival

» Seedbank: not visible

» Dynamics: germination, seed production,
dormancy and colonisation
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Annual plants dynamics: several patches
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[with S. Le Coz at MIAT and P.-O. Cheptou at CEFE Montpellier]
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Birds migration routes

» Which are the main routes used by the shorebirds?

» several stop overs

» possible routes form a network

» bird trajectories not available

> data: imperfect counts (eBird data)

[with R. Sabbadin, R. Trépos and M.-J. Cros at MIAT, and S. Nicol at CSIRO
Brisbane]
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Birds migration routes

. Observed counts at each site
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Deers behaviour

» How to reconstruct successive activity phases from accelerometry

data?
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[S. Plancade at MIAT and N. Morellet, N. Ranc at CEFS]
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Deers behaviour: several individuals

> Several deers in a same location: change in one animal’s activity
phase (hidden) may impact behaviours of other animals

IP)[ZPr1 = running|Z} = foraging, Z? = running] = 0.7
P[Z}., = running|Z} = foraging, Z? = foraging] = 0.1
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A common framework for dynamics of temporal processes

in interaction with hidden states?
» Common features :

» several individual dynamics

> that are not independent

» with two levels : hidden state (regime, class, ...) and observations
(hidden+noise, proxy of hidden, ...)

» Differences : interaction does not always take place at the same level

» Other examples : epidemiology, earthquakes, signal processing...

Natural framework: HMM (already largely used for one individual
dynamics)
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This talk is about

» reviewing existing HMM based models for modeling interacting
temporal processes with hidden states

» proposing a general definition of multichain HMM

» discussing estimation complexity
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Multichain HMM: a typology
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Starting point

Variables:
» Hidden: Z; with C components (C chains): Z, = (Z},...,Z) with
7€ € Qze.
» Observed: Y; with O components (O observations):
Y, = (YL,...,Y2) with Y? € Qye.

Proposition of a hierarchy of definitions built by successively
adding conditional independencies assumptions
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General MHMM

> (Z;, Y;)ien is Markovian

]P)(zl’+17 Yt+1 | Zta Yl’)
=P(Yer | Zeg1, Ze, Vi) X P(Zey1 | Z2, V)

= emission X transition

clelejele
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> limit: space needed for representation |Q27]2¢ x |Qy |2©
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MHMM with conditional independencies in emission and
transition

> in emission (resp. transition) terms,
additional assumption of
conditional independencies of the
Vi (the Z5,,)
» factorisation
> IED(zt+1 | zt7 Yt) -
[ P(ZE | 22, Ye)

> P(Yei1 | Zet1,Ze, Vi) =
Hfﬂp(ytil | Zi1, Z:, Ye)

15/31



MHMM with conditional independencies in emission and
transition

» gain in representation space
> C|Qz|“" x |Q2|° terms for transition
> 0]Qz[*¢ x |Q7]°*! terms for emission
> factorisation meaningful in many applications (weeds, birds, deers)

» some dynamical graphical models from literature are examples
MHMM-CI
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Subcase 1 of MHMM-CI

Factorial HMM (FHMM, [Ghahramani and Jordan, 1997])

z
> O0=1
» independent hidden Markov chains
» joint emission of the observation 72
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Subcase 1 of MHMM-CI

Application: birds migration routes
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Subcase 2 of MHMM-CI

1to1-MHMM-CI: one observation per hidden variable

» O=C
> ]P(th—i-l | Zi1, 2y, Yt) =
P(Yf | 261, Ze, Vi)
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Subcase 2 of MHMM-CI

Building 1to1-MHMM-CI by coupling HMM structures



Subcase 2 of MHMM-CI
Application: deers behaviours as a CHMM [Brand, 1997]
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Subcase 2 of MHMM-CI

Application: weeds dynamics [Le Coz et al., 2019]
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Typology

General MHMM
(Z,Y) Markov

MHMM-CI
factorisation

\

1tol-MHMM-CI
one observation per
hidden variable

FHMM
common emission

CHMIM
Interaction at the
hidden chains level
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Multichain HMM: tractability of estimation
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Tractability of MHMM estimation

Estimation of the emission and the transition

Context

» EM: classical algorithm for computing the Maximum Likelihood
Estimator in models with hidden (latent) variables

» EM for HMM
» standard tool (many packages)
> relies on the forward-backward algorithm

> time complexity O(TK?) (T, length of observation sequence, K,
number of hidden states)

Question: is it still stractable for MHMM? Does it depends on the
dependency structure?
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Complexity of EM for a General MHMM

» a MHMM is an HMM with large state
space (up to some adaptation)

> state space of Z, is of dimension K¢

» EM complexity is O( TK?): untractable

clelejele
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Complexity of EM for some MHMM-CI
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» Hidden chains are not independent conditionally to the observations

» The forward-backward recursions must be run on the
multidimentional hidden state

» EM complexity is O( TK2): untractable
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Complexity of EM for some MHMM-CI
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» Hidden chains are independent conditionally to the observations
» A forward-backward algorithm is run independently for each chain

> EM complexity is O(CTK?): tractable
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Conclusion
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Conclusion

» A general framework that includes and generalizes well known
structures of multichain HMMs (FHMM, CHMM)

» Various dependencies structures = can cover many different
applications

» Parameter estimation

» exact EM in general exponential in number of chains but can be
linear for some structures

> if exponential complexity, classical options for approximate inference
are Monte Carlo, variational approximation or simplifying
assumptions

» Beyond: multichain HSMM

> the classical representation by state and duration not adapted
anymore

> we propose a rigorous definition based on hazard rate ... but that
would be another talk
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