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Medical context

e Patients who have had cancer benefit
from regular follow-up;

1 e The concentration of clonal

# \ immunoglobulin is measured over time;
. \ ] e The doctor has to make new decisions
N /'/\ at each visit.

Ficure: Example of patient data®
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Medical context

e Patients who have had cancer benefit
from regular follow-up;

- \ e The concentration of clonal

Epp

immunoglobulin is measured over time;

. \ ] e The doctor has to make new decisions
/'/\ at each visit.

i = . = Optimising decision-making to ensure
the patient’s quality of life

Ficure: Example of patient data®

41UCT Oncopole and CRCT, Toulouse, France



Controlled PDMP'

We switch randomly from one deterministic regime to another.
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Let x = (m, ¢, R, ¢, u) the patient’s condition:

m the patient’s condition;

¢ the current treatment;

k the number of treatments;

¢ the biomarker;

u the time since the last jump.
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Local Characteristics of a PDMP?

A PDMP is defined by three local characteristics.

D
#25(C,1)
O?.Q “7 0 |
-\ =
ce Description of the deterministic part of the process.

¢g,1(COa t)

Co
Co 1 t

(x, 1) = (m, k, £, ¢fy x(C, 1), U+ 1)

2Piecewise Deterministic Markov Processes



Local Characteristics of a PDMP?

A PDMP is defined by three local characteristics.

JUMP INTENSITY

Description of the process jump mechanisms.
o Boundary jump (deterministic)

t*(x) = th,(C) = inf{t > 0 : ¢fy (¢, 1) € {Co, D}}

¢(CD),1 (COa t)

Co
Co 1 t

e Random jump

P(T > t) = e~ 16 Am (e as

2Piecewise Deterministic Markov Processes



Local Characteristics of a PDMP?

remission
(m=o0)

A PDMP is defined by three local characteristics.

relapse
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terminal
relapse
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death
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--9 Random Jump
— Deterministic Jump
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Description of the state of the process after each jump.
(m=3)

P(X' € AX =x) = [, Q% ((®*(x,T),dx’)

MARKOV KERNEL



Solving impulse control for PDMP3

Identify an e-optimal strategy S = (7, xn)n>

—+o0
S —t
V(S,X) = EX / e 7 CR(Xt) dt + Z XTn7X7' ) s
—— o S—— n—1
Expected cost of strategyS current trajectory cost |mpulse cost

3Piecewise Deterministic Markov Processes



Solving impulse control for PDMP3

Identify an e-optimal strategy S = (7, xn)n>

—+o0
S —t
V(S,X) = EX / e 7 CR(Xt) dt + Z XTn7X7' ) s
—— o S—— n—1
Expected cost of strategyS current trajectory cost |mpulse cost

VA (x) = inf V(S.x)
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Difficulties

Partially known dynamics

Partial observation
D
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Hypothesis: v; ~ Log-Normal (i, c~2), with
4 and o unknown.



Methods

Simplified real-life problem

|

continuous time §
continuous state space o
partially observed Controlled PDMP* ®
partially known dynamics —
imulabl >
simulable : "

\

Deep Reinforcement Learning
Data consuming
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Methods

Simplified real-life problem

i

Controlled PDMP> | =
o
discrete observation dates l Q
. D
continuous state space —
partially observed BAPOMDP® 5
known dynamics va
simulable ‘
v

Deep Reinforcement Learning

5Piecewise Deterministic Markov Processes
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Characteristics of a MDP’

BAPOMDP

POMDP

Markov Decision Process

7Markov Decision Process
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Characteristics of a POMDP?

POMDP DEFINITION

A POMDP is defined by a tuple (S, A, P,Q,Z, c).
i e Patient conditions = (m,R,¢,u) € S;
________ Environment ________ o Actionsa = (,r) € A;
o Transition function P(s’|s, a);
e Observation w = (k, F(¢,€), 1m—3) € O
o Observation function Z(w|s);
e Costfunctionc:SxA xS — R

8partially Observed Markov Decision Process
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Characteristics of a POMDP?

Environment

8partially Observed Markov Decision Process

= POMDP DEFINITION

< APOMDP is defined by a tuple (S, A, P, Q, Z, c).

<
S

Patient condition s = (m, R, (,u) € S;

e Actionsa = (¢,r) € A;

Transition function P(s’|s, a);
Observation w = (k, F(¢, €), 1m—3) € O
Observation function Z(w|s);

Cost functionc: S x AX S = R.
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Characteristics of a POMDP?

—»  Agent

POMDP DEFINITION

A POMDP is defined by a tuple (S, A, P,Q,Z, c).
X e Patient conditions = (m,R,¢,u) € S;
Environment e Actionsa = (£,r) € A;

Wn+r

o Transition function P(s’|s, a);

e Observation w = (k, F(¢,€), 1m—3) € O
o Observation function Z(w|s);

e Costfunctionc: S XA xS — R.
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Handle uncertainty with Bayesian framework

Normal-Inverse-Gamma(®©) prior

11 / 18



Characteristics of a BAPOMDP?

BAPOMDP DEFINITION

. Un BAPOMDP se définit par un tuple (ST, A, P, Q,Z, c).
777777777 EQYI[QQF@?@E [ o Space of hyperstate S™ = S x ©;
| 3 e Actionsa = (¢,r) € A;
| ! o Transition function P* (s, 0'[s, a, 6);
3 Z(sn) 3 e Observation w = (R, F(¢, €), Im=3) €
! | e Observation function Z(w|s);
} i e Costfunctionc:SxA xS — R.
: I
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Characteristics of a BAPOMDP?

BAPOMDP DEFINITION

Envi ¢ Un BAPOMDP se définit par un tuple (ST, A, P, Q,Z, c).

7777777777 nvironment . o Space of hyperstate S™ = S x ©;
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e Observation function Z(w|s);
e Costfunctionc:SxA xS —R.
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Characteristics of a BAPOMDP?

»  Agent

Environment

BAPOMDP DEFINITION

Un BAPOMDP se définit par un tuple (ST, A, P, Q,Z, c).
o Space of hyperstate S™ = S x ©;
e Actionsa = (¢,r) € A;

L o Transition function P* (s, 0'[s, a, 0);

e Observation w = (R, F(¢, €), Im=3) €

e Observation function Z(w|s);

e Costfunctionc:SxA xS —R.

Whtr
c(Sn, An, Sn+r)

9Bayes Adaptive Partially observed Markov decision process



Generate transition from prior

,o72) ~p(b Rl , Y - B \\ "‘:z )
(075~ p6), 2 \(1.072) ~ p(9) {02~ p(dy Un <P
L ke “ v N el
St = (St Oryr) £ St = (Stir Oeer) St = (Stir: Oeir) St = (Stirs Orir)



Generate transition from prior

(0™ Iy o2

St = (Strr, Oeyr) - St = (Strr Oeir) St = (Stir: Oeir) St = (Stirs Orir)



Generate transition from prior

s¢ = (st 6r)
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Generate transition from prior

s{ = (s, 6r)

(1.072) ~ NIG(B)
w7 \

v~ LN(p,07?)
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Generate transition from prior

St+ = (St, 9[)

K' \
(,072) ~ NIG(O)
L’,, ‘\
vV~ LN(p,07?)
L”,
Styr ~ Py(Stir[St, ar)
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Generate transition from prior

s = (st,60)

.
¥ \

(1,072 ~ NIG(B)
L’/ '
~ —2 !
v ,LN(M,O' ) \

Vg ’

Ster ~ Py(Styr|St, Q1)

-
2

Orvr = P(Ocrr|St, Gy, Styr, Oryr)
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Generate transition from prior

SEF - (St,9t)

.
.

¥ \
(1,072) ~ NIG(O)
L’,, ‘\
v~ LN(p,072) k

-
-

P
Star ~ Py(Styr|St, ar)
e
Otsr = P(Orir|St, 1, Str, Orr)

L’,

S:H = (St4r, Or4r)
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Solving a BAPOMDP™"

Identify an optimal policy =*

c(s,a,s") = Cy
——— ~—
Cost function  Visit cost
+ CD(H - t,) X 1m/:3
death cost

+ Kre XX 1i—q
S ——

treatment cost

°Bayes Adaptative Partially Observable Markov Decision Process
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Solving a BAPOMDP™"

Identify an optimal policy =*

H—1
V(T(',S) = Eg[z C(Sn—’l,An’Sn)]
P . A n=o0
Optimization criterion

Expected long-term cost as a result of the policy =

°Bayes Adaptative Partially Observable Markov Decision Process
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Solving a BAPOMDP™"

Identify an optimal policy 7*

H—1
V(ﬂ-7s) = Eg[z C(Sn—1,An7Sn)]
N—— n—o

Optimization criterion

Expected long-term cost as a result of the policy =

Vi(s) = milr_1I V(m,s)
—— TE
Value function —

Minimisation across policy space
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Solving a BAPOMDP™"

Identify an optimal policy 7*

In reality, we do not observe state space!

Let h, = (wo, Ao, w1, s, - . . ,wp) be the history
V<(h) = miH V(m, h)
N—— TE
Value function —

Minimisation across policy space.

°Bayes Adaptative Partially Observable Markov Decision Process
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Reinforcement Learning

cost He1

Q"(s,a) = E"[>_ c(Sn-1,An,Sn)ls,a = (£,1)]

n=o0

Qvalue

Value of an action in a state according to the policy =

Environment .
| Q*(s,a) =minQ"(s,q)
—— el

observation Q function

The optimal policy is obtained from the
experiments < w, a,w’, ¢ >, generate from A(s,a) = Q(s,a) — V(s)
N————’

P* transition function ~——
Advantage function  Extra cost obtained by the agent by taking the action



Algorithm example: PPO"

Agent
Value Loss
Ly = [Vo(wr) = (c(st, a*, St41) + Wo(wer))?
+
Policy Loss At
Lp = —E[min(re(0)As, clip(r(6),1 — €,1 + €)A)]
(wtg, €(St, aF, St41)) Gradient loss
ARG I
Value Advantage estimation
Vo(wr) At = (51, 0", St41) + YVo(wesr) — Vo(wr)

wt
Environment Neural Network PPO
[ a; ~ mo(arwe)

Policy
mo(Qt|we)

ai ~ mo(atwe)

"Proximal policy optimization

16



Preliminary results

Policy Mean cost (log) cl Death rate
OH 5.76 5.49,6.03 58.69%
Real model 7.40 [7.08,7.72] 99.66%
BAPOMDP model 7.46 [7.14,7.78] 99.65%

TaBLE: Policy evaluation performance on 10° simulations



Conclusion and future work

Simplified real-life problem

i

=
Controlled PDMP™ o
o
/ \ ®
POMDP™ - - - - - === === oo oo > BAPOMDP* | 5’
i B . ) i m x
=TT D
- n
- = : o)
[Algorlthms Model—free} [Algorlth ms Model-basedj }E
‘—r
o
S

Saving real data

2pjecewise Deterministic Markov Processes
Bpartially Observed Markov Decision Process

“Bayes Adaptative Partially Observed Markov Decision Process
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