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Medical context
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Figure: Example of patient dataa

aIUCT Oncopole and CRCT, Toulouse, France

• Patients who have had cancer benefit
from regular follow-up;

• The concentration of clonal
immunoglobulin is measured over time;

• The doctor has to make new decisions
at each visit.

=⇒ Optimising decision-making to ensure
the patient’s quality of life
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Controlled PDMP1

We switch randomly from one deterministic regime to another.
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remission
(m = 0)

terminal
relapse
(m = 2)

D
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Let x = (m, ℓ, k, ζ,u) the patient’s condition:
• m the patient’s condition;
• ℓ the current treatment;
• k the number of treatments;
• ζ the biomarker;
• u the time since the last jump.
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Local Characteristics of a PDMP2

A PDMP is defined by three local characteristics.
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Flow

Description of the deterministic part of the process.

Φℓ(x, t) = (m, k, ℓ, ϕℓ
m,k(ζ, t), u + t)
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Jump intensity

Description of the process jump mechanisms.
• Boundary jump (deterministic)

t⋆(x) = tℓ⋆m,k(ζ) = inf{t > 0 : ϕℓ
m,k(ζ, t) ∈ {ζ0, D}}

• Random jump

P(T > t) = e−
∫ t

0 λℓ
m,k(Φ(x,s)) ds
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Local Characteristics of a PDMP2

A PDMP is defined by three local characteristics.
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terminal
relapse
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death
(m = 3)

ℓ = a

ℓ ̸= a

Random Jump
Deterministic Jump

Markov kernel

Description of the state of the process after each jump.

P(X′ ∈ A|X = x) =
∫
A Q

d
m,k(Φ

ℓ(x, T), dx′)
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Solving impulse control for PDMP3

Identify an ϵ-optimal strategy S = (τn, χn)n≥1

V(S, x)︸ ︷︷ ︸
Expected cost of strategyS

= ES
x

∫ +∞

0
e−γt cR(Xt)︸ ︷︷ ︸

current trajectory cost

dt+
∞∑
n=1

cI︸︷︷︸
impulse cost

(
Xτn , Xτ+

n

) ,

V⋆(x) = inf
S∈S

V(S, x)

3Piecewise Deterministic Markov Processes
5 / 18



Solving impulse control for PDMP3

Identify an ϵ-optimal strategy S = (τn, χn)n≥1

V(S, x)︸ ︷︷ ︸
Expected cost of strategyS

= ES
x

∫ +∞

0
e−γt cR(Xt)︸ ︷︷ ︸

current trajectory cost

dt+
∞∑
n=1

cI︸︷︷︸
impulse cost

(
Xτn , Xτ+

n

) ,

V⋆(x) = inf
S∈S

V(S, x)

3Piecewise Deterministic Markov Processes
5 / 18



Difficulties

Partial observation

D
D
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t

Partially known dynamics
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Hypothesis: v1 ∼ Log-Normal (µ, σ−2), with
µ and σ unknown.
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Methods

Simplified real-life problem

Controlled PDMP4

continuous time
continuous state space

partially observed
partially known dynamics

simulable

M
odelling

Deep Reinforcement Learning
Data consuming
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Characteristics of a MDP7
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Characteristics of a POMDP8
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POMDP Definition

A POMDP is defined by a tuple (S, A, P,Ω, Z, c).
• Patient condition s = (m, k, ζ, u) ∈ S;
• Actions a = (ℓ, r) ∈ A;
• Transition function P(s′|s, a);
• Observation ω = (k, F(ζ, ϵ), 1m=3) ∈ Ω;
• Observation function Z(ω|s);
• Cost function c : S × A × S → R.
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Handle uncertainty with Bayesian framework

µ σNormal-Inverse-Gamma(Θ) prior

v

patients
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Characteristics of a BAPOMDP9
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BAPOMDP Definition

Un BAPOMDP se définit par un tuple (S+, A, P+,Ω, Z, c).
• Space of hyperstate S+ = S × Θ;
• Actions a = (ℓ, r) ∈ A;
• Transition function P+(s′, θ′|s, a, θ);
• Observation ω = (k, F(ζ, ϵ), 1m=3) ∈ Ω;
• Observation function Z(ω|s);
• Cost function c : S × A × S → R.
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Generate transition from prior

s+t = (st, θt)
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Solving a BAPOMDP10

Identify an optimal policy π⋆

c(s,a, s′)︸ ︷︷ ︸
Cost function

= CV︸︷︷︸
visit cost

+ CD(H− t′)× 1m′=3︸ ︷︷ ︸
death cost

+ κC × r × 1ℓ=a︸ ︷︷ ︸
treatment cost

10Bayes Adaptative Partially Observable Markov Decision Process
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Solving a BAPOMDP10

Identify an optimal policy π⋆
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Optimization criterion

= Eπ
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c(Sn−1,An, Sn)]︸ ︷︷ ︸
Expected long-term cost as a result of the policy π
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Solving a BAPOMDP10

Identify an optimal policy π⋆

In reality, we do not observe state space!

Let hn = (ω0,a0, ω1,a1, . . . , ωn) be the history

V⋆(h)︸ ︷︷ ︸
Value function

= min
π∈Π

V(π,h)︸ ︷︷ ︸
Minimisation across policy space.
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Reinforcement Learning

EnvironmentAgent

observation

action

cost

The optimal policy is obtained from the
experiments < ω,a, ω′, c >, generate from

P+ transition function

Qπ(s,a)︸ ︷︷ ︸
Q value

= Eπ[
H−1∑
n=0

c(Sn−1,An, Sn)|s,a = (ℓ, r)]︸ ︷︷ ︸
Value of an action in a state according to the policy π

Q⋆(s,a)︸ ︷︷ ︸
Q function

=min
π∈Π

Qπ(s,a)

A(s,a)︸ ︷︷ ︸
Advantage function

= Q(s,a)− V(s)︸ ︷︷ ︸
Extra cost obtained by the agent by taking the action
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Algorithm example: PPO11

Neural Network PPOEnvironment

Policy
πθ(at|ωt)

Value
Vθ(ωt)

Advantage estimation
At = c(st,a⋆, st+1) + γVθ(ωt+1)− Vθ(ωt)

ωt

a⋆t ∼ πθ(at|ωt)

Policy Loss
LP = −E[min(rt(θ)At, clip(rt(θ), 1 − ϵ, 1 + ϵ)At)]

Value Loss
LV = [Vθ(ωt)− (c(st,a⋆, st+1) + γVθ(ωt+1))]

2

At

+

Gradient loss

a⋆t ∼ πθ(at|ωt)

Agent

(ωt+1, c(st,a⋆t , st+1))

11Proximal policy optimization
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Preliminary results

Policy Mean cost (log) CI Death rate
OH 5.76 [5.49, 6.03] 58.69%

Real model 7.40 [7.08, 7.72] 99.66%
BAPOMDP model 7.46 [7.14, 7.78] 99.65%

Table: Policy evaluation performance on 105 simulations
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Conclusion and future work
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