Deep Reinforcement Learning for Impulse Control in PDMPs through BAPOMDP framework

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹, Régis Sabbadin ³ and Meritxell Vinyals ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France ²Iohn Curtin School of Medical Research. The Australian National University. Canberra, ACT, Australia ³Univ Toulouse, INRAE-MIAT, Toulouse, France

July 2025

Medical context

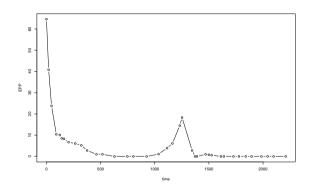


FIGURE: Example of patient data^a

- Patients who have had cancer benefit from regular follow-up;
- The concentration of clonal immunoglobulin is measured over time;
- The doctor has to make new decisions at each visit.

^aIUCT Oncopole and CRCT, Toulouse, France

Medical context

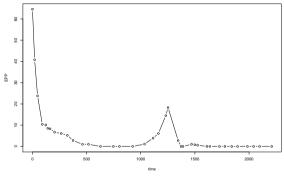


FIGURE: Example of patient data a

The concentration of clonal immunoglobulin is measured over time;

Patients who have had cancer benefit

 The doctor has to make new decisions at each visit.

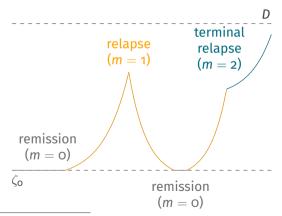
⇒ Optimising decision-making to ensure the patient's quality of life

from regular follow-up;

^aIUCT Oncopole and CRCT, Toulouse, France

Controlled PDMP¹

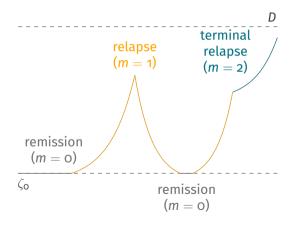
We switch randomly from one deterministic regime to another.



¹Piecewise Deterministic Markov Processes

Controlled PDMP¹

We switch randomly from one deterministic regime to another.



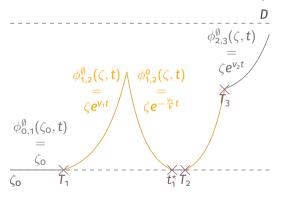
Let $x = (m, \ell, k, \zeta, u)$ the patient's condition:

- *m* the patient's condition;
- \ell the current treatment;
- k the number of treatments;
- ζ the biomarker;
- *u* the time since the last jump.

¹Piecewise Deterministic Markov Processes

Local Characteristics of a PDMP²

A PDMP is defined by three local characteristics.



FLOW

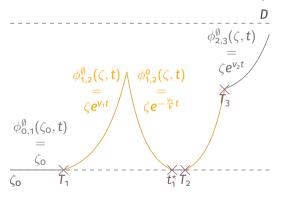
Description of the deterministic part of the process.

$$\Phi^{\ell}(\mathbf{x},t) = (m,k,\ell,\phi_{m,k}^{\ell}(\zeta,t),u+t)$$

²Piecewise Deterministic Markov Processes

Local Characteristics of a PDMP²

A PDMP is defined by three local characteristics.



Jump intensity

Description of the process jump mechanisms.

Boundary jump (deterministic)

$$\mathsf{t}^\star(\mathsf{x}) = \mathsf{t}^{\ell\,\star}_{m,k}(\zeta) = \inf\{\mathsf{t} > \mathsf{o} : \phi^\ell_{m,k}(\zeta,\mathsf{t}) \in \{\zeta_\mathsf{o},\mathsf{D}\}\}$$

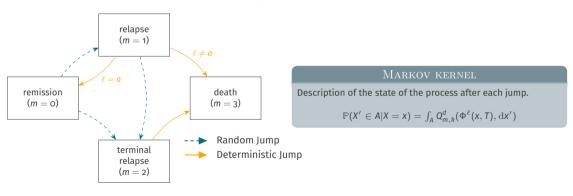
Random jump

$$\mathbb{P}(T > t) = e^{-\int_0^t \lambda_{m,k}^{\ell}(\Phi(x,s)) \, \mathrm{d}s}$$

²Piecewise Deterministic Markov Processes

Local Characteristics of a PDMP²

A PDMP is defined by three local characteristics.



²Piecewise Deterministic Markov Processes

Solving impulse control for PDMP³

Identify an ϵ -optimal strategy $S = (\tau_n, \chi_n)_{n \geq 1}$

$$\underbrace{\mathcal{V}(\mathcal{S}, \mathbf{X})}_{\text{Expected cost of strategy}\mathcal{S}} = \mathbb{E}_{\mathbf{X}}^{\mathcal{S}} \left[\int_{0}^{+\infty} e^{-\gamma t} \underbrace{c_{R}(X_{t})}_{\text{current trajectory cost}} dt + \sum_{n=1}^{\infty} \underbrace{c_{I}}_{\text{impulse cost}} (X_{\tau_{n}}, X_{\tau_{n}^{+}}) \right],$$

³Piecewise Deterministic Markov Processes

Solving impulse control for PDMP³

Identify an ϵ -optimal strategy $S = (\tau_n, \chi_n)_{n \geq 1}$

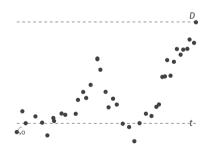
$$\underbrace{\mathcal{V}(\mathcal{S}, \mathbf{x})}_{\text{Expected cost of strategy}\mathcal{S}} = \mathbb{E}_{\mathbf{x}}^{\mathcal{S}} \left[\int_{0}^{+\infty} e^{-\gamma t} \underbrace{c_{R}(X_{t})}_{\text{current trajectory cost}} dt + \sum_{n=1}^{\infty} \underbrace{c_{I}}_{\text{impulse cost}} (X_{\tau_{n}}, X_{\tau_{n}^{+}}) \right],$$

 $V^*(x) = \inf_{S \in S} V(S, x)$

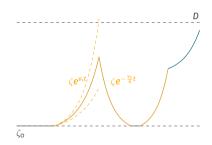
³Piecewise Deterministic Markov Processes

Difficulties

Partial observation

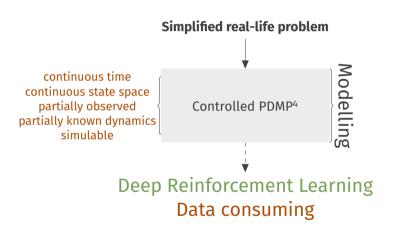


Partially known dynamics



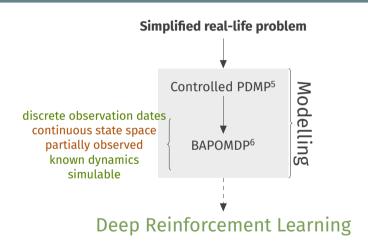
Hypothesis: $v_1 \sim \text{Log-Normal } (\mu, \sigma^{-2})$, with μ and σ unknown.

Methods



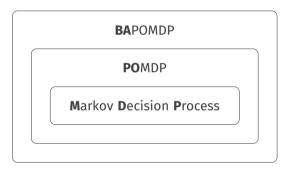
⁴Piecewise Deterministic Markov Processes

Methods



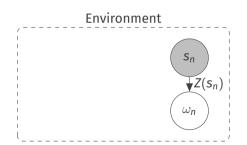
⁵Piecewise Deterministic Markov Processes

⁶Bayes-Adaptive Partially Observed Markov Decision Process



⁷Markov Decision Process

Agent

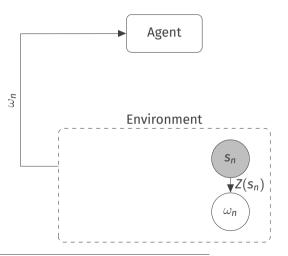


POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega;$
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁸Partially Observed Markov Decision Process

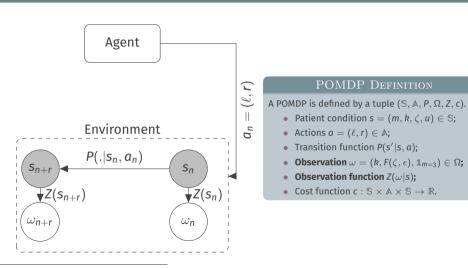


POMDP DEFINITION

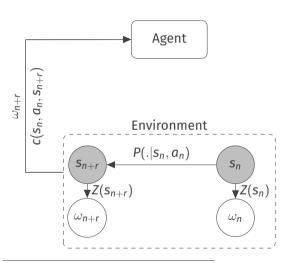
A POMDP is defined by a tuple $(\mathbb{S}, \mathbb{A}, P, \Omega, Z, c)$.

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c: \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁸Partially Observed Markov Decision Process



⁸Partially Observed Markov Decision Process



POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

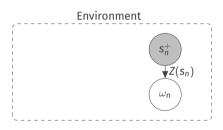
- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁸Partially Observed Markov Decision Process

Handle uncertainty with Bayesian framework

Normal-Inverse-Gamma(⊖) prior patients

Agent

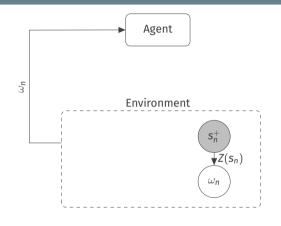


BAPOMDP DEFINITION

Un BAPOMDP se définit par un tuple (\mathbb{S}^+ , \mathbb{A} , P^+ , Ω , Z, c).

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁹Bayes Adaptive Partially observed Markov decision process

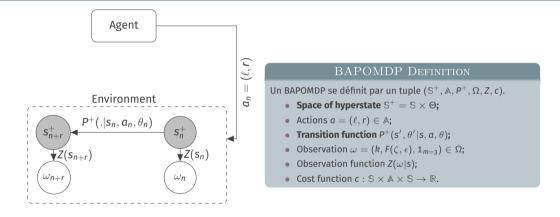


BAPOMDP DEFINITION

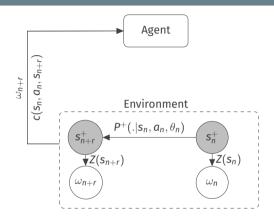
Un BAPOMDP se définit par un tuple ($\mathbb{S}^+, \mathbb{A}, P^+, \Omega, Z, c$).

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁹Bayes Adaptive Partially observed Markov decision process



⁹Bayes Adaptive Partially observed Markov decision process

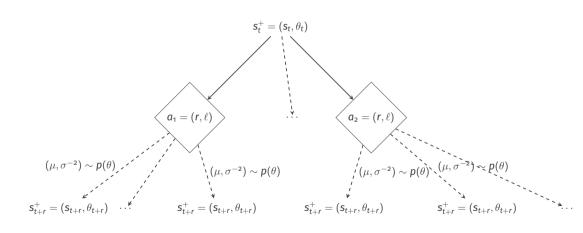


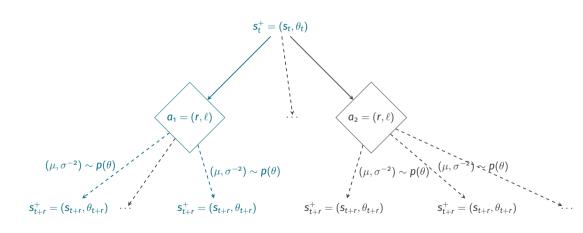
BAPOMDP DEFINITION

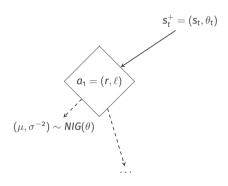
Un BAPOMDP se définit par un tuple ($\mathbb{S}^+, \mathbb{A}, P^+, \Omega, Z, c$).

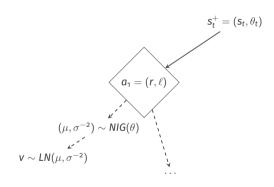
- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

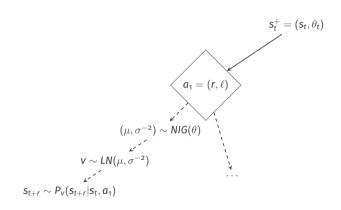
⁹Bayes Adaptive Partially observed Markov decision process

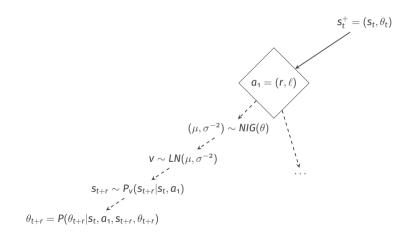


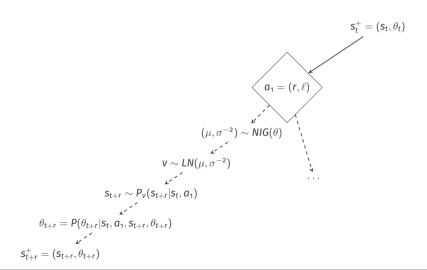












Identify an optimal policy π^{\star}

$$\underbrace{ c(s, a, s')}_{\text{Cost function}} = \underbrace{ c_V}_{\text{visit cost}} \\ + \underbrace{ c_D(H - t') \times \mathbb{1}_{m' = 3}}_{\text{death cost}} \\ + \underbrace{ \kappa_C \times r \times \mathbb{1}_{\ell = a}}_{\text{treatment cost}}$$

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^{\star}

$$\underbrace{V(\pi, s)}_{\text{Optimization criterion}} = \underbrace{\mathbb{E}_{s}^{\pi} [\sum_{n=0}^{H-1} c(S_{n-1}, A_{n}, S_{n})]}_{\text{Expected long-term cost as a result of the policy } \pi$$

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^{\star}

$$\underbrace{V(\pi, s)}_{\text{Optimization criterion}} = \underbrace{\mathbb{E}_{s}^{\pi} [\sum_{n=0}^{H-1} c(S_{n-1}, A_{n}, S_{n})]}_{\text{Expected long-term cost as a result of the policy } \pi$$

$$\underbrace{V^*(s)}_{\text{Value function}} = \underbrace{\min_{\pi \in \Pi} V(\pi, s)}_{\text{Minimisation across policy space}}$$

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^{\star}

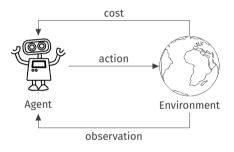
In reality, we do not observe state space!

Let $h_n = (\omega_0, a_0, \omega_1, a_1, \dots, \omega_n)$ be the history

$$\underbrace{V^{\star}(h)}_{\text{Value function}} = \underbrace{\min_{\pi \in \Pi} V(\pi, h)}_{\text{Minimisation across policy space.}}$$

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

Reinforcement Learning



The optimal policy is obtained from the experiments $<\omega,a,\omega',c>$, generate from P^+ transition function

$$\underbrace{Q^{\pi}(s,a)}_{\text{Q value}} = \underbrace{\mathbb{E}^{\pi}\left[\sum_{n=0}^{H-1} c(S_{n-1},A_n,S_n)|s,a=(\ell,r)\right]}_{\text{Q value}}$$

Value of an action in a state according to the policy π

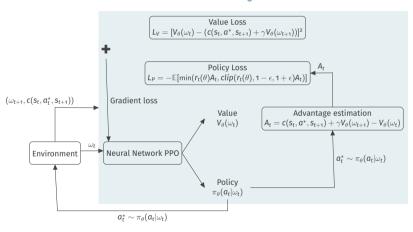
$$\underbrace{Q^{\star}(s,a)}_{Q \text{ function}} = \min_{\pi \in \Pi} Q^{\pi}(s,a)$$

$$\underline{A(s,a)} = \underline{Q(s,a) - V(s)}$$

Advantage function Extra cost obtained by the agent by taking the action

Algorithm example: PPO¹¹

Agent



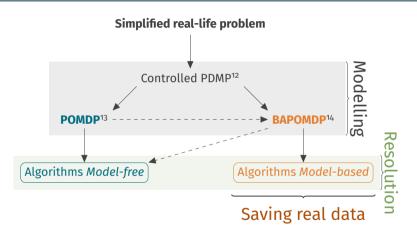
¹¹Proximal policy optimization

Preliminary results

Policy	Mean cost (log)	CI	Death rate
ОН	5.76	[5.49, 6.03]	58.69%
Real model	7.40	[7.08, 7.72]	99.66%
BAPOMDP model	7.46	[7.14, 7.78]	99.65%

 ${\rm TABLE:} \ \ Policy \ evaluation \ performance \ on \ 10^5 \ simulations$

Conclusion and future work



¹² Piecewise Deterministic Markov Processes

¹³Partially Observed Markov Decision Process

¹⁴Bayes Adaptative Partially Observed Markov Decision Process