Limit and Ergodic Theorems for Perturbed Semi-Markov-Type Processes

Dmitrii Silvestrov

Stockholm University, Mälardalen University (Sweden) E-mail: silvestrov@math.su.se

> MaSeMo 1-4 July 2025, Paris

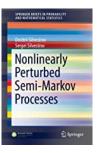
Abstract

The lecture aims to present and comment on the results of the recent books on perturbed semi-Markov-type processes and their applications:

- [1] Silvestrov, D. (2025). Coupling and Ergodic Theorems for Semi-Markov-Type Processes II: Semi-Markov Processes and Multi-Alternating Regenerative Processes with Semi-Markov Modulation. Springer, Cham, xiv+550 pp.
- [2] Silvestrov, D. (2025). Coupling and Ergodic Theorems for Semi-Markov-Type Processes I: Markov Chains, Renewal and Regenerative Processes. Springer, Cham, xix+590 pp.
- [3] Silvestrov, D. (2022). Perturbed Semi-Markov Type Processes II: Ergodic Theorems for Multi-Alternating Regenerative Processes. Springer, Cham, xvii+413 pp.
- [4] Silvestrov, D. (2022). Perturbed Semi-Markov Type Processes I: Limit Theorems for Rare-Event Times and Processes. Springer, Cham, xvii+401 pp.
- [5] Silvestrov, D., Silvestrov, S. (2017). Nonlinearly Perturbed Semi-Markov Processes. Springer Briefs in Probability and Mathematical Statistics, Springer, Cham, xiv+143 pp.

Asymptotic Expansions for Nonlinearly Perturbed SMP

[5] Silvestrov, D., Silvestrov, S. (2017). Nonlinearly Perturbed Semi-Markov Processes. Springer Briefs in Probability and Mathematical Statistics, Springer, Cham, xiv+143 pp.



• Calculus of Laurent asymptotic expansions:

$$A(\varepsilon) = a_{h_A} \varepsilon^{h_A} + \cdots + a_{k_A} \varepsilon^{k_A} + o_A(\varepsilon^{k_A}) \ (-\infty < h_A < k_A < \infty),$$

where:

$$o_A(\varepsilon^{k_A})/\varepsilon^{k_A} \to 0 \ \ {
m or} \ \ |o_A(\varepsilon^{k_A})| \le G_A \varepsilon^{k_A + \delta_A}.$$

Asymptotic Expansions for Nonlinearly Perturbed SMP

- $\eta_{\varepsilon}(t), t \geq 0$ is, for $\varepsilon \geq 0$, a semi-Markov process with state space $\mathbb{X} = \{1, \ldots, m\}$ and transition probabilities $Q_{\varepsilon, ij}(t) = p_{\varepsilon, ij} F_{\varepsilon, ij}(t)$.
- $\begin{array}{l} \left(\alpha\right) \text{ (a) } \rho_{ij}(\varepsilon) = \sum_{l=l_{ij,-}}^{l_{ij,+}} a_{ij}[I]\varepsilon^l + o_{ij}(\varepsilon^{l_{ij,+}}), (i,j) \in A \ \left(|o_{ij}| \leq G_{ij}\varepsilon^{m_{ij,+}[k]+\delta_{ij}}\right) \\ \text{ (b) } \rho_{ij}(\varepsilon) = 0, (i,j) \in \bar{A}. \end{array}$

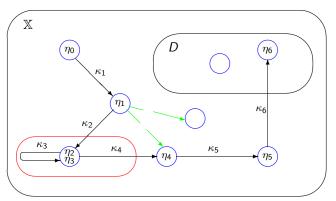
$$e_{ij}(k,\varepsilon)=\int_0^\infty u^k F_{\varepsilon,ij}(du),\ k\geq 1.$$

 $\begin{array}{l} \left(\beta\right) \ (\mathbf{a}) \ e_{ij}(d,\varepsilon) < \infty, (i,j) \in A, \varepsilon > 0, \\ \mathbf{(b)} \ e_{ij}(k,\varepsilon) = \sum_{l=m_{ij},-\lfloor k\rfloor}^{m_{ij},+\lfloor k\rfloor} b_{ij}[k,l]\varepsilon^l + o_{k,ij}(\varepsilon^{m_{ij},+\lfloor k\rfloor}), (i,j) \in A, k \leq d \\ \left(|o_{k,ij}| \leq G_{k,ij}\varepsilon^{m_{ij},+\lfloor k\rfloor+\delta_{k,ij}}\right). \end{array}$

$$\tau_{\varepsilon}(D) = \inf(t > 0 : \eta_{\varepsilon}(t) \in D), \text{ for } D \subset X.$$

• Assimptotic expansions without and with explicit upper bounds for remainders for moments of hitting times, stationary and quasi-stationary distributions.

Recurrent reduction of state space

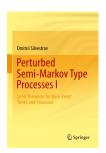


$$\mathsf{E}_{i}\tau_{\varepsilon}(D)^{k} = \sum_{l=m_{i,-}[k]}^{m_{i,+}[k]} c_{i}[k,l]\varepsilon^{l} + o_{k,i}(\varepsilon^{m_{i,+}[k]}), i \in \mathbb{X}, k \leq d \left(|o_{k,i}| \leq G_{k,i}\varepsilon^{m_{i,+}[k]+\delta_{i,k}}\right),$$

$$\pi_{\varepsilon}(i) = \sum_{l=n_{i-1}}^{n_{i,+}} \pi_{i}[l] \varepsilon^{l} + o_{i}(\varepsilon^{n_{i,+}}), i \in \mathbb{X} (|o_{i}| \leq G_{i} \varepsilon^{m_{i,+}+\delta_{i}}).$$

Perturbed Semi-Markov-Type Processes

- [4] Silvestrov, D.S. (2022). Perturbed Semi-Markov Type Processes I. Limit Theorems for Rare-Event Times and Processes. Springer, Cham, xvii+401 pp.
- [3] Silvestrov, D.S. (2022). Perturbed Semi-Markov Type Processes II. Ergodic Theorems for Multi-Alternating Regenerative Processes. Springer, Cham, xvii+413 pp.



 $\begin{array}{l} (\eta_{\varepsilon,n},\kappa_{\varepsilon,n},\chi_{\varepsilon,n}), n=0,1,\dots \text{ is, for every } \varepsilon\in(0,1], \text{ a Markov renewal process, i.e., a homogenous Markov chain with a phase space }\mathbb{Z}=\mathbb{X}\\ \times[0,\infty)\times\{0,1\}\ (\mathbb{X}=\{1,2,\dots,m\}) \text{ and transition probabilities}\\ Q_{\varepsilon,ij}(t,\jmath)=\mathsf{P}_{(i,s,\imath)}\{\eta_{\varepsilon,1}=j,\kappa_{\varepsilon,1}\leq t,\chi_{\varepsilon,1}=\jmath\}, (i,s,\imath), (j,t,\jmath)\in\mathbb{Z}. \end{array}$

$$\eta_{arepsilon}(t)=\eta_{arepsilon,n}, \ ext{for} \ \zeta_{arepsilon,n}\leq t<\zeta_{arepsilon,n+1}, \ \zeta_{arepsilon,n}=\sum_{r=1}^n \kappa_{arepsilon,r}, n=0,1,\ldots$$

$$\xi_{\varepsilon}(t) = \sum_{1 \leq n \leq t\nu_{\varepsilon}} \kappa_{\varepsilon,n}, t \geq 0, \text{ where } \nu_{\varepsilon} = \min(n \geq 1 : \chi_{\varepsilon,n} = 1).$$

 $\eta_{\varepsilon,n}, n=0,1,\ldots$ is a Markov chain with transition probabilities $p_{\varepsilon,ij}=\mathsf{P}_i\{\ \eta_{\varepsilon,1}=j\}=\sum_{\jmath=0,1}Q_{\varepsilon,ij}(\infty,\jmath),\ i,j\in\mathbb{X}.$

(A): There exists a chain of states $i_0, i_1, \ldots, i_N = i_0$ such that: (a) it contains all states from \mathbb{X} , (b) $\varliminf_{\varepsilon \to 0} p_{\varepsilon, i_{k-1} i_k} > 0$, for $1 \le k \le N$.

 $\pi_{\varepsilon,i}, i \in \mathbb{X}$ is the stationary distribution of the Markov chain $\eta_{\varepsilon,n}$, $p_{\varepsilon,i} = \mathsf{P}_i\{\chi_{\varepsilon,1} = 1\} = \sum_{i \in \mathbb{X}} Q_{\varepsilon,ij}(\infty,1), i \in \mathbb{X}$.

- (\mathcal{B}): $0 < \max_{i \in \mathbb{X}} p_{\varepsilon,i} \to 0$ as $\varepsilon \to 0$.
- (C): $P_i\{\kappa_{\varepsilon,1} > \delta/\chi_{\varepsilon,1} = 1\} \to 0$ as $\varepsilon \to 0$, for $\delta > 0$, $i \in \mathbb{X}$.

$$\begin{split} & \rho_{\varepsilon} = \sum_{i \in \mathbb{X}} p_{\varepsilon,i} \pi_{\varepsilon,i}, \ u_{\varepsilon} = p_{\varepsilon}^{-1}, \\ & F_{\varepsilon,i}(t) = P_i \{ \kappa_{\varepsilon,1} \leq t \} = \sum_{j \in \mathbb{X}, j = 0,1} Q_{\varepsilon,ij}(t,j), t \ \geq 0, \ i \in \mathbb{X}, \\ & \theta_{\varepsilon,n}, n = 1, 2, \dots \text{ are i.i.d. random variables with the distribution function} \\ & F_{\varepsilon}(t) = \sum_{i \in \mathbb{X}} F_{\varepsilon,i}(t) \pi_{\varepsilon,i}, t \geq 0. \end{split}$$

- (\mathcal{D}): $\sum_{n\leq u_{\varepsilon}}\theta_{\varepsilon,n}\stackrel{\mathrm{d}}{\longrightarrow}\theta_{0}$ as $\varepsilon\to0$, where θ_{0} is a non-zero random variable (θ_{0} has an infinitely divisible distribution and $\mathsf{E}e^{-s\theta_{0}}=e^{-A(s)},s\geq0$).
- **T** Let model assumptions (A) (C) are satisfied. Then:
- (i) Condition (\mathcal{D}) is necessary and sufficient for holding the following relation, $\xi_{\varepsilon}(1) \stackrel{d}{\longrightarrow} \xi_0$ as $\varepsilon \to 0$, where ξ_0 is a non-zero random variable. (ii) $\mathrm{Ee}^{-s\xi_0} = \frac{1}{1+4(s)}, s \ge 0$.
- (iii) $\xi_{\varepsilon}(t), t \geq 0 \xrightarrow{J} \xi_{0}(t), t \geq 0$ as $\varepsilon \to 0$, where $\xi_{0}(t) = \theta_{0}(t\nu_{0}), t \geq 0$, where: (a) ν_{0} is a random variable, which has the exponential distribution with parameter 1, (b) $\theta_{0}(t), t \geq 0$ is a nonnegative Lévy process with the Laplace transforms $\mathrm{Ee}^{-s\theta_{0}(t)} = \mathrm{e}^{-tA(s)}, s, t \geq 0$, (c) ν_{0} and $\theta_{0}(t), t \geq 0$ are independent.

$$\Sigma_{\varepsilon}(t) = c_{\varepsilon}t - \sum_{n=1}^{N_{\lambda}(t)} \rho_n, \ t \geq 0,$$

where: (a) $c_{\varepsilon}>0$, (b) $N_{\lambda}(t)$, $t\geq0$ is a Poisson process with parameter λ , (c) $\rho_n, n=1,2,\ldots$ is a sequence of nonnegative i.i.d. random variables independent on the process $N_{\lambda}(t), t\geq0$, (d) $P\{\rho_1\leq u\}=H(u)$.

$$G_{\varepsilon}(u) = P\{u + \inf_{t \geq 0} \Sigma_{\varepsilon}(t) \geq 0\}, \ u \geq 0.$$

- (γ): (a) $\mu = \int_0^\infty sH(ds) < \infty$,(b) $\alpha_\varepsilon = \lambda \mu/c_\varepsilon < 1$ for $\varepsilon \in (0,1]$ and $\alpha_\varepsilon \to 1$ as $0 < \varepsilon \to 0$.
- $(\delta'): \ \tfrac{t\int_t^\infty (1-H(s))ds}{\int_0^t s(1-H(s))ds} \to \tfrac{1-\gamma}{\gamma} \ \text{as} \ t \to \infty, \ \text{for some} \ 0 < \gamma \le 1.$
- $\left(\delta''\right)$: $\frac{\int_0^{\varepsilon^{-1}} s(1-H(s))ds}{(1-\alpha_\varepsilon)\mu\varepsilon^{-1}} \to a_{\overline{\Gamma(2-\gamma)}}$ as $0 < \varepsilon \to 0$, for some a > 0.

T Let condition (γ) is satisfied. Then: **(a)** conditions (δ') and (δ'') are necessary and sufficient for the fulfilment of the asymptotic relation, $G_{\varepsilon}(\cdot \varepsilon^{-1}) \Rightarrow G_0(\cdot)$ as $0 < \varepsilon \to 0$, where $G_0(\cdot)$ is a distribution function on $[0,\infty)$ not concentrated at zero, **(b)** $\int_0^\infty e^{-su} G_0(du) = \frac{1}{1+as\gamma}, s \ge 0$.

- Limit theorems for counting processes generated by flows of rare events for regularly perturbed SMP,
- Limit theorems for vector first-rare-event rewards and first-rare-event times and processes for regularly perturbed SMP with transition periods and extending phase spaces.
- Necessary and sufficient conditions for weak convergence of non-ruin distribution functions for perturbed risk processes.
- Necessary and sufficient conditions for convergence in distribution for first-rare-event times for a number of models of perturbed closed M/M-type queuing systems.
- Necessary and sufficient conditions for convergence in distribution for first-rare-event times for perturbed M/M queueing systems with bounded and unbounded queue buffers.
- Necessary and sufficient conditions for weak convergence of first hitting times for regularly perturbed SMP.

[6] Silvestrov, D.S. (2004). Limit Theorems for Randomly Stopped Stochastic Processes. Probability and Its Applications, Springer, London, xiv+398 pp.

$$(\nu_{\varepsilon}(t), \xi_{\varepsilon}(t)), t \geq 0 \rightarrow (\nu_{0}(t), \xi_{0}(t), t \geq 0 \text{ as } \varepsilon \rightarrow 0, \xi_{\varepsilon}(\nu_{\varepsilon}(t)), t \geq 0 \rightarrow \xi_{0}(\nu_{0}(t)), t \geq 0 \text{ as } \varepsilon \rightarrow 0$$
?

 Convergence in distribution, uniform topology U, and Skorokhod topology J for superpositions of callag processes.

$$\begin{split} &(\eta_{\varepsilon,n},\kappa_{\varepsilon,n}), n=0,1,\dots \text{ is, for every } \varepsilon \in (0,1], \text{ a Markov renewal} \\ &\text{process, i.e., a homogenous Markov chain with a phase space } \mathbb{Y} \\ &= \mathbb{X} \times [0,\infty) \; (\mathbb{X} = \{1,2,\dots,m\}) \text{ and transition probabilities} \\ &Q_{\varepsilon,ij}(t) = F_{\varepsilon,ij}(t) p_{\varepsilon,ij} = \mathsf{P}_{(i,s)} \{\eta_{\varepsilon,1} = j, \kappa_{\varepsilon,1} \leq t\}, \; (i,s), (j,t) \in \mathbb{Y}. \end{split}$$

Semi-Markov process:

$$\eta_{\varepsilon}(t) = \eta_{\varepsilon,n} \text{ for } \zeta_{\varepsilon,n} \leq t < \zeta_{\varepsilon,n+1}, \text{ where } \zeta_{\varepsilon,n} = \sum_{r=1}^{n} \kappa_{\varepsilon,r}, n = 0, 1, \dots,$$

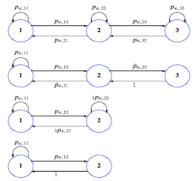
$$\tau_{\varepsilon,\mathbb{D}} = \sum_{r=1}^{\nu_{\varepsilon,n}} \kappa_{\varepsilon,n}, \text{ where } \nu_{\varepsilon,\mathbb{D}} = \min(n \geq 1 : \eta_{\varepsilon,n} \in \mathbb{D}).$$

Singularly perturbed Markov chains

- (\mathcal{E}): $p_{\varepsilon,ij} \to p_{0,ij}$ as $\varepsilon \to 0$, for $i,j \in \mathbb{X}$
- (\mathcal{F}): $F_{\varepsilon,ij}(\cdot u_{\varepsilon,i}) \Rightarrow F_{0,ij}(\cdot)$ as $\varepsilon \to 0, i,j \in \mathbb{X}$, where: (a) $F_{0,ij}(\cdot)$ are distribution functions not concentrated at zero if $p_{0,ij} > 0$. (b) $u_{\varepsilon,i} \in (0,\infty)$ and $u_{\varepsilon,i} \to u_{0,i} \in (0,\infty]$ as $\varepsilon \to 0, i,j \in \mathbb{X}$.
- (G): $u_{\varepsilon,i}^{-1} \int_0^\infty t F_{\varepsilon,ij}(dt) \to \int_0^\infty t F_{0,ij}(dt)$ as $\varepsilon \to 0, i,j \in \mathbb{X}$.

Recurrent algorithms of phase space reduction

$$egin{array}{ll} \eta_{arepsilon}(t) &= _{ar{k}_0} \eta_{arepsilon}(t) \ &
ightarrow _{ar{k}_0} ilde{\eta}_{arepsilon}(t)
ightarrow _{ar{k}_1} \eta_{arepsilon}(t) \ & \cdots \ &
ightarrow _{ar{k}_{h-1}} ilde{\eta}_{arepsilon}(t)
ightarrow _{ar{k}_h} \eta_{arepsilon}(t) \ &
ightarrow _{ar{k}_h} ilde{\eta}_{arepsilon}(t). \end{array}$$



Definition A family $\mathcal H$ of positive functions $h(\varepsilon)$ defined on interval (0,1] is a complete family of asymptotically comparable functions if: (1) it is closed with respect to operations of summation, multiplication and division, and (2) functions $h(\cdot) \in \mathcal H$ have limits taking values in interval $[0,\infty]$, as $\varepsilon \to 0$.

Examples

(a)
$$\frac{h(\varepsilon)}{a_h\varepsilon^{b_h}} \to 1$$
, (b) $\frac{h(\varepsilon)}{a_h\varepsilon^{b_h}e^{-c_h\varepsilon-1}} \to 1$, (c) $\frac{h(\varepsilon)}{a_h\varepsilon^{b_h}(1+\ln\varepsilon^{-1})^{-d_h}} \to 1$ as $\varepsilon \to 0$, where $a_h > 0$, b_h , c_h , $d_h \in (-\infty,\infty)$.

(\mathcal{H}): Non-zero transition probabilities $p_{\varepsilon,ij}$ and the initial normalisation functions $u_{\varepsilon,i}$, $i \in \mathbb{X}$ belong to a class \mathcal{H} .

Normalisation functions $\bar{k}_n u_{\varepsilon,i}$ for the semi-Markov process $\bar{k}_n \eta_{\varepsilon}(t)$ are defined for $i \in \bar{k}_{\varepsilon} \mathbb{X}$, $\bar{k}_n = \langle k_1, \dots, k_n \rangle$, $k_1, \dots, k_n \in \bar{\mathbb{D}}, 0 \leq n \leq \bar{m} - 2$ as,

$$\bar{k}_n u_{\varepsilon,i} = \prod_{r=0}^n (1 - \bar{k}_r p_{\varepsilon,ii})^{-1} u_{\varepsilon,ii}$$

$$(\mathcal{I}): \lim_{\varepsilon \to 0} \frac{\bar{k}_n u_{\varepsilon,k_{n+1}}}{\bar{k}_n u_{\varepsilon,i}} = w_{0,k_{n+1},i} \in [0,\infty), \ i \in \bar{k}_n \mathbb{X}, 0 \leq n \leq \bar{m} - 2.$$

T Let conditions (\mathcal{E}) – (\mathcal{I}) are satisfied. Then, for $i \in \overline{\mathbb{D}}, j \in \mathbb{D}$,

$$\mathsf{P}_i\{ au_{arepsilon,\mathbb{D}}/\check{u}_{arepsilon,i}\leq\cdot,\eta_{arepsilon,
u_{arepsilon,\mathbb{D}}}=j\}\Rightarrow \mathit{G}_{0,\mathbb{D},ij}(\cdot) \ \mathit{as}\ arepsilon o 0,$$

where the normalisation functions $\check{u}_{\varepsilon,i}, i \in \bar{\mathbb{D}}$ and the Laplace transforms $\Psi_{0,\mathbb{D},ij}(s) = \int_0^\infty e^{-st} G_{0,\mathbb{D},ij}(dt), s \geq 0, i \in \bar{\mathbb{D}}, j \in \mathbb{D}$ are given by explicit recurrent formulas.

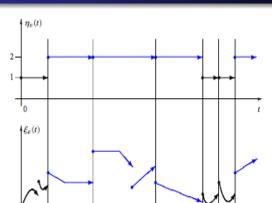
- Forward and backward asymptotic recurrent algorithms of phase space reduction for regularly and singularly perturbed SMP.
- Weak limit theorems for hitting and return times for regularly and singularly perturbed SMP.
- Limit theorems for expectations of hitting and return times for regularly and singularly perturbed SMP.
- Asymptotic recurrent algorithms of phase space reduction for perturbed birth-death type SMP.

V2: Ergodic Theorems for Perturbed ARP

- $\varepsilon \in (0,1], \mathbb{X} = \{1,\ldots,m\}, \mathbb{Z}$ is an arbitrary measurable space, $\mathcal{B}_{\mathbb{Z}}$.
- (1) $\bar{\xi}_{\varepsilon,i,n} = \langle \xi_{\varepsilon,i,n}(t), t \geq 0 \rangle$ is, for every $i \in \mathbb{X}$ and n = 1, 2, ..., a measurable stochastic process with a phase space \mathbb{Z} .
- (2) $\kappa_{\varepsilon,i,n}$ is, for every $i \in \mathbb{X}$ and n = 1, 2, ..., a non-negative random variable.
- (3) $\eta_{\varepsilon,i,n}$ and η_{ε} be random variables taking values in the space \mathbb{X} , for every $i \in \mathbb{X}$ and $n = 1, 2, \ldots$
- **(4)** Stochastic triplets $\langle \bar{\xi}_{\varepsilon,i,n} = \langle \xi_{\varepsilon,i,n}(t), t \geq 0 \rangle, \kappa_{\varepsilon,i,n}, \eta_{\varepsilon,i,n} \rangle$, $i \in \mathbb{X}$, $n = 1, 2, \ldots$ and the random variable η_{ε} are mutually independent.
- **(5)** Joint distributions of random variables $\xi_{\varepsilon,i,n}(t_k), k=1,\ldots,r$, $\kappa_{\varepsilon,i,n}$, and $\eta_{\varepsilon,i,n}$ do not depend on $n\geq 1$, for every $i\in\mathbb{X}$ and $t_k\geq 0, k=1,\ldots,r,r\geq 1$.

$$\begin{cases} \eta_{\varepsilon,n} = \eta_{\varepsilon,\eta_{\varepsilon,n-1},n}, n=1,2,\ldots,\eta_{\varepsilon,0} = \eta_{\varepsilon}, \\ \zeta_{\varepsilon,n} = \kappa_{\varepsilon,\eta_{\varepsilon,0},1} + \cdots + \kappa_{\varepsilon,\eta_{\varepsilon,n-1},n}, n=1,2,\ldots,\zeta_{\varepsilon,0} = 0, \\ \xi_{\varepsilon}(t) = \xi_{\varepsilon,\eta_{\varepsilon,n-1},n}(t-\zeta_{\varepsilon,n-1}), \eta_{\varepsilon}(t) = \eta_{\varepsilon,n-1}, \text{for } \zeta_{\varepsilon,n-1} \leq t < \zeta_{\varepsilon,n}, n \geq 1. \end{cases}$$

 $(\xi_{\varepsilon}(t),\eta_{\varepsilon}(t)),t\geq 0$ is a regenerative process, if m=1; an alternating regenerative process, if m=2; a multi-alternating regenerative process, if m>2; $\eta_{\varepsilon}(t),t\geq 0$ is a modulating semi-Markov process.



$$egin{aligned} P_{arepsilon,ij}(t,A) &= \mathsf{P}_i\{\xi_{arepsilon}(t) \in A, \eta_{arepsilon}(t) = j\}, \ t \geq 0, A \in \mathcal{B}_{\mathbb{Z}}, i,j \in \mathbb{X}. \ &\{P_{arepsilon,ij}(t,A) = \mathrm{I}(i=j)q_{arepsilon,i}(t,A) + \sum_{k \in \mathbb{X}} \int_0^t P_{arepsilon,kj}(t-s,A)Q_{arepsilon,ik}(ds), t \geq 0, i \in \mathbb{X}, \end{aligned}$$

 $\text{where } Q_{\varepsilon,ik}(t) = \mathsf{P}_i\{\zeta_{\varepsilon,1} \leq t, \eta_{\varepsilon,1} = k\}, \ q_{\varepsilon,i}(t,A) = \mathsf{P}_i\{\xi_{\varepsilon}(t) \in A, \zeta_{\varepsilon,1} > t\}.$

- (\mathcal{J}): $p_{\varepsilon,ij} \to p_{0,ij}$ as $\varepsilon \to 0$, for $i,j \in \mathbb{X} = \{1,2\}$.
- (\mathcal{K}): $F_{\varepsilon,ij}(\cdot) \Rightarrow F_{0,ij}(\cdot)$ as $\varepsilon \to 0, i, j \in \mathbb{X}$, where $F_{0,ij}(\cdot)$ are a non-arithmetic distribution functions, for $i, j \in \mathbb{X}$ such that $p_{0,ij} > 0$.
- (\mathcal{L}): $e_{\varepsilon,ij}=\int_0^\infty t F_{\varepsilon,ij}(dt) \to e_{0,ij}=\int_0^\infty t F_{0,ij}(dt)$ as $\varepsilon\to 0$, for $i,j\in\mathbb{X}$.
- (\mathcal{M}): $q_{\varepsilon,i}(s_{\varepsilon},A) \to q_{0,i}(s,A)$ for any $0 \le s_{\varepsilon} \to s$, as $\varepsilon \to 0$, and $s \in U_A$, $A \in \Gamma$, $i \in \mathbb{X}$ where: (a) U_A is some Borel subset of $[0,\infty)$ such that the Lebesgue measure $m(\bar{U}_A) = 0$, (b) $q_{0,i}(s,A)$ is a measurable function continuous almost everywhere with respect to the Lebesgue measure on $[0,\infty)$, (c) $\Gamma \subseteq \mathcal{B}_{\mathbb{Z}}$ and $\mathbb{Z} \in \Gamma$.

Condition (\mathcal{M}) implies that Γ is closed with respect to the operation of union for not intersecting sets, the operation of difference for sets connected by the relation of inclusion, and the complement operation.

- (\mathcal{N}): $p_{0,12} \vee p_{0,21} > 0$ (regularly perturbed ARP).
- (\mathcal{O}): $0 < p_{\varepsilon,12}, p_{\varepsilon,21} \to 0$ as $\varepsilon \to 0$ (singularly perturbed ARP).
- (\mathcal{P}): $0 < p_{\varepsilon,12} \to 0$ as $\varepsilon \to 0$, $p_{\varepsilon,21} \equiv 0$ or $0 < p_{\varepsilon,21} \to 0$ as $\varepsilon \to 0$, $p_{\varepsilon,12} \equiv 0$ (super-singularly perturbed ARP).

(Q):
$$p_{\varepsilon,12}/p_{\varepsilon,21} \to \beta \in [0,\infty]$$
 as $\varepsilon \to 0$.

The individual ergodic theorems for singularly perturbed models:

$$P_{\varepsilon,ij}(t_{\varepsilon},A) \to \pi_{ij}^{(\beta)}(t,A) \text{ as } \varepsilon \to 0,$$
 (1)

which hold for any $0 \le t_{\varepsilon} \to \infty$ as $\varepsilon \to 0$ such that,

$$t_{\varepsilon}/v_{\varepsilon} \to t \in [0,\infty] \text{ as } \varepsilon \to 0, \text{ or } t_{\varepsilon}/w_{\varepsilon} \to t \in [0,\infty] \text{ as } \varepsilon \to 0,$$

where v_{ε} and w_{ε} are so-called time compression factors,

$$v_{\varepsilon} = p_{\varepsilon,12}^{-1} + p_{\varepsilon,21}^{-1} \ge w_{\varepsilon} = (p_{\varepsilon,12} + p_{\varepsilon,21})^{-1}.$$

(Q) implies that $w_{\varepsilon}/v_{\varepsilon} \to \beta/(1+\beta^2)$ as $\varepsilon \to 0$. Obviously, $w_{\varepsilon} = O(v_{\varepsilon})$ as $\varepsilon \to 0$, if $\beta \in (0, \infty)$, while $w_{\varepsilon} = o(v_{\varepsilon})$ as $\varepsilon \to 0$, if $\beta = 0$ or $\beta = \infty$.

We refer to the ergodic relation (1) as **short**-time -, **long**-, or **super-long** ergodic theorems if, respectively t = 0, $t \in (0, \infty)$, or $t = \infty$.

V2: Ergodic Theorems for Perturbed ARP

T Let conditions (\mathcal{J}) – (\mathcal{M}) , (\mathcal{O}) , and (\mathcal{Q}) (with some $\beta \in (0,\infty)$) are satisfied. Then the following ergodic relation takes place for any $A \in \Gamma, i,j \in \mathbb{X}$ and any $0 \le t_{\varepsilon} \to \infty$ as $\varepsilon \to 0$ such that $t_{\varepsilon}/v_{\varepsilon} \to t \in (0,\infty)$ as $\varepsilon \to 0$,

$$P_{\varepsilon,ij}(t_{\varepsilon},A) \to \pi_{ij}^{(\beta)}(t,A) = p_{ij}^{(\beta)}(t)\pi_{0,j}(A) \text{ as } \varepsilon \to 0.$$

where: **(a)** $p_{ij}^{(\beta)}(t), t \geq 0, i, j \in \mathbb{X}$ be transition probabilities for continuous time, homogeneous Markov chain, with phase space $\mathbb{X} = \{1,2\}$ transition intensities $\lambda_{12} = (1+\beta)/e_{0,1}$, $\lambda_{21} = (1+\beta^{-1})/e_{0,2}$, where $e_{0,i} = \sum_{j \in \mathbb{X}} e_{0,ij} p_{0,ij}, i \in \mathbb{X}$, and $p_{ij}^{(\beta)}(t), t \geq 0, i, j \in \mathbb{X}$ be transition probabilities for this Markov chain, **(b)** $\pi_{0,j}(A) = \frac{1}{e_{0,j}} \int_0^\infty q_{0,j}(s) ds, A \in \mathcal{B}_{\mathbb{Z}}, j \in \mathbb{X}$.

 The complete classification of super-long-, long- and short-time ergodic theorems for regularly, singularly, and super-singularly perturbed alternating regenerative processes (based on 26 ergodic theorems) is given.

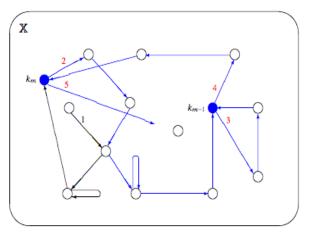
V2: Ergodic Theorems for Perturbed ARP

[7] Gyllenberg, M., Silvestrov, D.S. (2008). Quasi-Stationary Phenomena in Nonlinearly Perturbed Stochastic Systems. De Gruyter Expositions in Mathematics, **44**, Walter de Gruyter, Berlin, ix+579 pp.

$$egin{aligned} x_{arepsilon}(t) &= q_{arepsilon}(t) + \int_0^t x_{arepsilon}(t-s) F_{arepsilon}(ds), \ t \geq 0. \ x_{arepsilon}(t) & o ? ext{ as } t o \infty ext{ and } arepsilon o 0. \end{aligned}$$

Renewal theorem for perturbed renewal equation.

- (\mathcal{R}): $p_{\varepsilon,ij} \to p_{0,ij}$ as $\varepsilon \to 0$, for $i,j \in \mathbb{X} = \{1,\ldots,m\}$.
- (S): $F_{\varepsilon,ij}(\cdot u_{\varepsilon,i}) \Rightarrow F_{0,ij}(\cdot)$ as $\varepsilon \to 0$, where (a) $F_{0,ij}(\cdot)$ are non-arithmetic distribution functions without singular component, for $i,j \in \mathbb{X}$ such that $p_{0,ij} > 0$, (b) $u_{\varepsilon,i} \in (0,\infty), \varepsilon \in (0,1]$ and $u_{\varepsilon,i} \to u_{0,i} \in (0,\infty]$ as $\varepsilon \to 0$, for $i \in \mathbb{X}$.
- (\mathcal{T}): $u_{\varepsilon,i}^{-1}f_{\varepsilon,ij}=\int_0^\infty tF_{\varepsilon,ij}(dt)\to f_{0,ij}=\int_0^\infty tF_{0,ij}(dt)$ as $\varepsilon\to 0,i,j\in\mathbb{X}$.
- (\mathcal{U}): $q_{\varepsilon,i}(s_{\varepsilon}u_{\varepsilon,i},A) \to q_{0,i}(s,A)$ for any $0 \le s_{\varepsilon} \to s$, as $\varepsilon \to 0$, and $s \in U_A$, $A \in \Gamma$, $i \in \mathbb{X}$ where: (a) U_A is some Borel subset of $[0,\infty)$ such that the Lebesgue measure $m(\bar{U}_A) = 0$, (b) $q_{0,i}(s,A)$ is a measurable function continuous almost everywhere with respect to the Lebesgue measure on $[0,\infty)$, (c) $\Gamma \subseteq \mathcal{B}_{\mathbb{Z}}$ and $\mathbb{Z} \in \Gamma$.
- (\mathcal{V}): Non-zero transition probabilities $p_{\varepsilon,ij}$ and the initial normalisation functions $u_{\varepsilon,i}, i \in \mathbb{X}$ belong to a complete class of asymptotically comparable functions \mathcal{H} .



$$ar{k}_n u_{arepsilon,i} = \prod_{r=0}^n (1 - \ ar{k}_r p_{arepsilon,ii})^{-1} u_{arepsilon,i}$$

(*W*):
$$\lim_{\varepsilon \to 0} \frac{\bar{k}_n u_{\varepsilon,k_{n+1}}}{\bar{k}_n u_{\varepsilon,i}} = w_{0,k_{n+1},i} \in [0,\infty), i \in \bar{k}_n \mathbb{X}, 0 \leq n \leq m-2.$$

(
$$\mathcal{X}$$
): $0 < \bar{k}_{m-2} p_{\varepsilon,12}, \bar{k}_{m-2} p_{\varepsilon,21} \to 0 \text{ as } \varepsilon \to 0.$

$$(\mathcal{Y}): \ _{\bar{k}_{m-2}}p_{\varepsilon,12}/_{\bar{k}_{m-2}}p_{\varepsilon,21} \to \beta = \ _{\bar{k}_{m-2}}\beta \in (0,\infty) \text{ as } \varepsilon \to 0.$$

$$(\mathcal{Z}): \ _{\bar{k}_{m-2}}u_{\varepsilon,k_m}/\ _{\bar{k}_{m-2}}u_{\varepsilon,k_{m-1}} \to \gamma = \ _{\bar{k}_{m-2}}\gamma \in (0,\infty) \ \text{as} \ \varepsilon \to 0.$$

T Let conditions $(\mathcal{R}) - (\mathcal{V})$, and $(\mathcal{W}) - (\mathcal{Z})$ (with some $\beta, \gamma \in (0, \infty)$) are satisfied. Then the following ergodic relation takes place for any $A \in \Gamma$, $i \in \mathbb{X}$ and any $0 \le t_{\varepsilon} \to \infty$ as $\varepsilon \to 0$ such that $t_{\varepsilon}/_{\bar{k}_{m-2}}v_{\varepsilon} \to t \in (0, \infty)$ as $\varepsilon \to 0$,

$$\mathsf{P}_{\varepsilon,i}(t_{\varepsilon\,\bar{k}_{m-2}}u_{\varepsilon},A)\to_{\bar{k}_{m-2}}\pi_{0,i}^{(\beta,\gamma)}(t,A)\text{ as }\varepsilon\to0.$$

where the time compression factors functions $_{\bar{k}_{m-2}}v_{\varepsilon}$, $_{\bar{k}_{m-2}}u_{\varepsilon}$ and the stationary probabilities $_{\bar{k}_{m-2}}\pi_{0,i}^{(\beta,\gamma)}(t,A)$ are given by explicit recurrent formulas.

• 12 super-long-, long-, and short-time ergodic theorems for regularly and singularly perturbed multi-alternating regenerative processes are given.

Gyllenberg and Silvestrov (2008), Silvestrov, D. and Silvestrov, S. (2017)

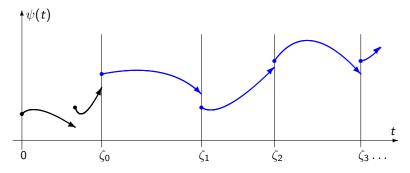
V1: Coupling and Ergodic Theorems for Semi-Markov-Type Processes

[2] Silvestrov, D. (2025). Coupling and Ergodic Theorems for Semi-Markov-Type Processes I: Markov Chains, Renewal and Regenerative Processes. Springer, Cham, xix+649 pp.

 Ergodic theorems with explicit power and exponential upper bounds for convergence rates for Markov chains, renewal and regenerative processes. These theorems are obtained using the coupling method in combination with the method of test functions.

V1: Coupling and Ergodic Theorems for Regenerative Processes

Regenerative process $\psi(t), t \geq 0$ with the state space \mathbb{X} , regenerative moments $\zeta_n = \sum_{r=0}^n \xi_r, \ n = 0, 1, \dots$ and the transition period $[0, \zeta_0)$.



$$\begin{split} \bar{F}(u) &= \mathsf{P}\{\xi_1 \leq u\}, \, u \geq 0, \ \, \bar{q}_t(A) = \mathsf{P}\{\psi(t) \in A, \xi_0 > t\}, \, A \in \mathcal{B}_{\mathbb{X}}, \, t \geq 0, \\ \bar{\mathsf{P}}_t &= \langle \bar{P}_t(A) = \mathsf{P}\{\psi(t) \in A\}, \, \, A \in \mathcal{B}_{\mathbb{X}} \rangle, \, t \geq 0, \\ F(u) &= \mathsf{P}\{\xi_1 \leq u\}, \, u \geq 0, \, \, q_t(A) = \mathsf{P}\{\psi(\zeta_0 + t) \in A, \xi_1 > t\}, \, A \in \mathcal{B}_{\mathbb{X}}, \, t \geq 0, \\ \mathsf{P}_t &= \langle P_t(A) = \mathsf{P}\{\psi(\zeta_0 + t) \in A\}, \, \, A \in \mathcal{B}_{\mathbb{X}} \rangle, \, t \geq 0. \end{split}$$

V1: Coupling and Ergodic Theorems for Regenerative Processes

$$e_{k,F} = \int_0^\infty u^k F(du), k \ge 1.$$

 \mathbf{E}_k : $e_{k,F} \in (0,\infty)$.

Condition \mathbf{E}_1 implies that the regenerative process $\psi(\cdot)$ has the statioanary distribution $\Pi = \langle \pi(A), A \in \mathcal{B}_{\mathbb{X}} \rangle$:

$$\pi(A) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \bar{P}_s(A) m(ds) = \frac{1}{e_{1,F}} \int_0^\infty q_s(A) m(ds), \ A \in \mathcal{B}_{\mathbb{X}}.$$

$$W(\mathsf{P}_1,\mathsf{P}_2) = \sup_{A \in \mathcal{B}_{\mathbb{X}}} |P_1(A) - P_2(A)|,$$

where $P_i = \langle P_i(A), A \in \mathcal{B}_{\mathbb{X}} \rangle, i = 1, 2.$

$$W(\bar{P}_t, \Pi) \to 0 \text{ as } t \to \infty,$$

 $W(\bar{P}_t, \Pi) \le G' t^{-g'} \to 0 \text{ as } t \to \infty,$
 $W(\bar{P}_t, \Pi) \le G'' e^{-g''t} \to 0 \text{ as } t \to \infty.$

V1: Coupling and Ergodic Theorems for Regenerative Processes

$$V_t(\mathsf{F}) = 1 - W(\mathsf{F},\mathsf{F}_t) = 1 - \sup_{A \in \mathcal{B}_{[0,\infty)}} |\mathsf{F}_t(A) - \mathsf{F}(A)|.$$

where: (a) $F_t = \langle F_t(A) = P\{\xi_1 + t \in A\}, A \in \mathcal{B}_{[0,\infty)} \rangle$, $t \ge 0$, (b) $F = F_0$.

$$V_t(\mathsf{F}) = \sup_{\mathsf{F}_2(\cdot,\cdot) \in \mathcal{L}[\mathsf{F},\mathsf{F}]} \mathsf{P}\{\xi' = \xi'' + t\},\,$$

where: (a) $\mathcal{L}[\mathsf{F},\mathsf{F}]$ is the family of all two-dimensional dictributions $F_2(u',u'')$ with marginals $F_2(u,\infty)=F_2(\infty,u)=F(u), u\geq 0$, (b) (ξ',ξ'') is a random vector with the distribution $\mathsf{P}\{\xi'\leq u',\xi''\leq u''\}=F_2(u',u''),u',u''\geq 0$.

Let $q \in (0,1)$ and T > 0:

$$\mathbf{H}_{q,T}$$
: $V_t(\mathsf{F}) \geq q, t \in [0, T]$.

Distribution $\mathsf{F} = \langle F(u), u \geq 0 \rangle$ has a non-zero absolutely continuous component in the Lebesgue decomposition if and only if condition $\mathbf{H}_{q,\mathcal{T}}$ is satisfied for some $q \in (0,1)$ and $\mathcal{T} > 0$.

V1: Coupling and Ergodic Theorems for RP

$$F_{\circ}(u) = \frac{1}{e_{1,F}} \int_{0}^{u} (1 - F(s)) ds, \ u \geq 0.$$

 T_1 Let conditions E_1 and $\mathsf{H}_{q,T}$ hold. Then, for $0 < t \to \infty$,

$$W(\bar{\mathsf{P}}_t,\mathsf{P}_t) \leq t^{-1} \big(A_{1,F} + B_{1,F} \int_0^t u \bar{F}(du) + B_{1,F} \, t (1 - \bar{F}(t) ig) o 0,$$

$$W(P_t, \Pi) \leq t^{-1} \big(A_{1,F} + B_{1,F} \int_0^t u F_{\circ}(du) \big) du + B_{1,F} t (1 - F_{\circ}(t)) \to 0.$$

 T_2 Let conditions E_k and $\mathsf{H}_{q,T}$ hold. Then, for $0 < t \to \infty$,

$$W(\bar{P}_t, P_t) \leq t^{-k} (A_{k,F} + \sum_{i=1}^k B_{k,i,F} \int_0^t u^i \bar{F}(du) + B_{k,k,F} t^k (1 - \bar{F}(t))) \to 0,$$

$$W(P_t, \Pi) \leq t^{-k} (A_{k,F} + \sum_{i=1}^k B_{k,i,F} \int_0^t u^i F_{\circ}(du) + B_{k,k,F} t^k (1 - F_{\circ}(t))) \to 0.$$

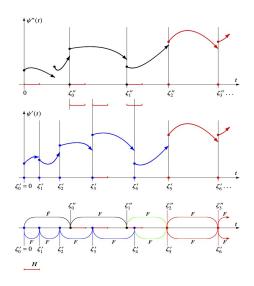
$$\mathbf{G}_{\beta}$$
: $E_{\beta,F} = \int_0^{\infty} e^{\beta u} F(du) \in (1,\infty)$ (for some $\beta > 0$).

 T_3 Let conditions G_β and $H_{q,T}$ hold. Then, for $\alpha \in [0, \alpha_{\beta,F})$ and $0 < t \to \infty$,

$$W(\bar{\mathsf{P}}_t, \mathsf{P}_t) \leq e^{-\alpha t} V_{\alpha, F} (1 + \int_0^t \alpha e^{\alpha u} (1 - \bar{F}(u)) du) \to 0,$$

$$W(\mathsf{P}_t,\mathsf{\Pi}) \leq e^{-\alpha t} V_{\alpha,\mathsf{F}} \big(1 + \int_0^t \alpha e^{\alpha u} (1 - \mathsf{F}_{\circ}(u)) du \big) \to 0.$$

√1: Coupling of Regenerative Processes



V1: Method of Test Functions

The Markov renewal process $\bar{\psi}=\langle\psi_n=(\eta_n,\xi_n),n=0,1,\ldots\rangle$ is a homogeneous MC with a state space $\mathbb{X}\times[0,\infty)$ and transition probabilities $Q(x,A,u)=\mathsf{P}\{\eta_{n+1}\in A,\xi_{n+1}\leq u|\eta_n=x,\xi_n=v\},x\in\mathbb{X},A\in\mathcal{B}_{\mathbb{X}},u,v\geq 0$. The following relation defines the corresponding semi-Markov process,

$$\eta(t) = \eta_n \text{ for } t \in [\zeta_n, \zeta_{n+1}), n = 0, 1, \dots, \text{ where } \zeta_n = \sum_{k=1}^n \xi_k.$$

$$\tau(D) = \sum_{k=1}^{\nu(D)} \kappa_k, \text{ where } \nu(D) = \min(n \ge 1 : \eta_n \in D),$$

$$M_r = \langle M_r(x) = \mathsf{E}_x \tau(D), x \in \mathbb{X} \rangle, r > 1.$$

 $\mathcal{V} = \{v\}$ is the space of Borel measurable functions acting from $\mathbb{X} \to [0, \infty]$, and for $v_1, \dots, v_k \in \mathcal{V}$,

$$\mathbf{P}v(x) = \mathsf{E}_{x}\kappa_{1}\mathsf{I}(\eta_{1} \in \bar{D})v(\eta_{1}), x \in \mathbb{X},
m_{[r]}(v_{1}, \dots, v_{r-1}) = \langle \mathsf{E}_{x}\kappa_{1}^{r} + \sum_{l=1}^{r-1} \binom{r}{l} \mathsf{E}_{x}\kappa_{1}^{r-l}\mathsf{I}(\eta_{1} \in \bar{D})v_{l}(\eta_{1}), x \in \mathbb{X} \rangle.$$

 T_k : There exist test functions $v_1, \ldots, v_k \in \mathcal{V}$ such that the following recursive test inequalitie hold, $v_r \geq m_{[r]}(v_1, \ldots, v_{r-1}) + \mathbf{P}v_r, r = 1, \ldots, k$.

T Moment functions M_r , $r=1,\ldots,k$ are minimal in $\mathcal V$ solutions for the recursive integral equations, $M_r=m_{[r]}(M_1,\ldots,M_{r-1})+\mathbf PM_r$, $r=1,\ldots,k$, and $\mathbf T_k$ is the necessary and sufficient condition for holding the inequalities,

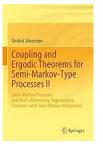
$$M_r \leq V_r = m_{[r]}(v_1, \ldots, v_{r-1}) + \mathbf{P}v_r \leq v_r, \ r = 1, \ldots, k.$$

V1: Contents of Volume I

- Ch. 1: Introduction (examples, models, results)
- Ch. 2: Coupling for random variables,
- Ch. 3-4: Coupling and ergodic theorems for Markov chains
- Ch. 5: Hitting times and method of test functions
- Ch. 6: Approaching of renewal schemes
- Ch. 7: Synchronizing of renewal schemes
- Ch. 8: Coupling of renewal schemes
- Ch. 9: Coupling and ergodic theorems for regenerative processes
- Ch. 10: Uniform ergodic theorems for regenerative processes
- Ch. 11: Generalized ergodic theorems for regenerative processes
- Ch. 12: Coupling and the renewal theorem

V2: Coupling and Ergodic Theorems for Semi-Markov-Type Processes

[1] Silvestrov, D. (2025). Coupling and Ergodic Theorems for Semi-Markov-Type Processes II: Semi-Markov Processes and Multi-Alternating Regenerative Processes with Semi-Markov Modulation. Springer, Cham, xiv+550 pp.



• Ergodic theorems with *explicit* power and exponential upper bounds for convergence rates for semi-Markov processes and multi-alternating regenerative processes with semi-Markov modulation. These theorems are obtained using the *coupling method* in combination with the *method of test functions* and the *method of artificial regeneration*.

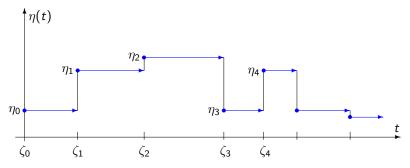
V2: Semi-Markov Processes

The Markov renewal process $\bar{\psi}=\langle \psi_n=(\eta_n,\xi_n), n=0,1,\ldots \rangle$ is a homogeneous MC with a state space $\mathbb X$ and transition probabilities defined for $x\in \mathbb X, A\in \mathcal B_{\mathbb X}, u,v\geq 0$:

$$Q(x, A, u) = P\{\eta_{n+1} \in A, \xi_{n+1} \le u | \eta_n = x, \xi_n = v\},\$$

The following relation defines the corresponding semi-Markov process,

$$\eta(t) = \eta_n \text{ for } t \in [\zeta_n, \zeta_{n+1}), n = 0, 1, \ldots, \text{ where } \zeta_n = \sum_{k=1}^n \xi_k.$$



V2: Artificial Regeneration for SMP

A one-step splitting condition:

 S_1 : There exists a recurrent set $D \in \mathcal{B}_{\mathbb{X}}$ such that,

$$Q(x, A, u) = (1 - \varepsilon) Q_D(x, A, u)$$

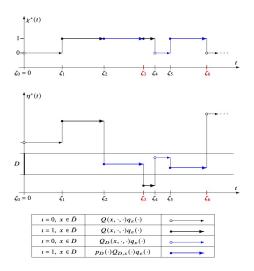
+ $\varepsilon p_D(A) Q_{D,x}(u), A \in \mathcal{B}_{\mathbb{X}}, u \in [0, \infty), \text{ for } x \in D.$

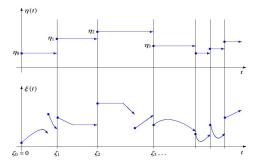
In this case, it is possible to define an extended Markov renewal process $\bar{\psi}_+^* = \langle \psi_+^*,_n = ((\chi_n^*,\eta_n^*),\xi_n^*),n=0,1,\ldots \rangle$ with the extended state space $\mathbb{Y}^* = \mathbb{Y} \times [0,\infty)$ (here, $\mathbb{Y} = \{0,1\} \times \mathbb{X}$) and transition probabilities,

$$\begin{split} Q_D^*(\imath,x,\jmath,A,u) &= \mathsf{P}\{\chi_1^* = \jmath, \, {}_N\eta_1^* \in A, \, {}_N\kappa_1^* \leq u \, | \, \chi_0^* = \imath, \, \eta_0^* = x\} \\ &= \left\{ \begin{array}{ll} Q(x,A,u)q_\varepsilon(\jmath) & \text{for } \imath \in \{0,1\}, x \in \bar{D}, \\ \jmath \in \{0,1\}, A \in \mathcal{B}_{\mathbb{X}}, u \in [0,\infty), \\ Q_D(x,A,u)q_\varepsilon(\jmath) & \text{for } \imath = 0, x \in D, \\ \jmath \in \{0,1\}, A \in \mathcal{B}_{\mathbb{X}}, u \in [0,\infty), \\ p_D(A) \, Q_{D,x}(u)q_\varepsilon(\jmath) & \text{for } \imath = 1, x \in D, \\ \jmath \in \{0,1\}, A \in \mathcal{B}_{\mathbb{X}}, u \in [0,\infty), \end{array} \right. \end{split}$$

where $ar{q}_{arepsilon}$ is the "tossing coin" distribution,

$$ar{q}_{arepsilon} = \langle q_{arepsilon}(\jmath) = (1-arepsilon) \mathrm{I}(\jmath=0) + arepsilon \mathrm{I}(\jmath=1), \jmath \in \{0,1\}
angle.$$





- Ch.1: Introduction (examples, models, results)
- Ch. 2: Summary of ergodic theorems for regenerative processes,
- Ch. 3: Extensions of hitting times and method of test functions
- Ch. 4: Birth-death processes
- Ch. 6: Discrete semi-Markov processes
- Ch. 7: Queuing systems
- Ch. 8: Semi-Markov processes with atoms
- Ch. 9: Semi-Markov processes with distributional atoms
- Ch. 10 -11: Semi-Markov processes and artificial regeneration
- Ch. 11-12: Multi-Alternating regenerative processes with semi-Markov modulation

Additional References

- [8] Silvestrov, D.S. (2014). American Type Options. Stochastic Approximation Methods, Volume 1. Studies in Mathematics, $\bf 56$, De Gruyter, Berlin, $\bf x+509$ pp.
- [9] Silvestrov, D.S. (2015). American Type Options. Stochastic Approximation Methods, Volume 2. Studies in Mathematics, **57**, De Gruyter, Berlin, xi+558 pp.

• Comprehensive **References** supplemented by historical, methodological, and bibliographical notes in books [1] - [9].

Additional References

- [10] Korolyuk, V.S., Turbin, A.F. (1978). Mathematical Foundations of State Lumping of Complex Systems. Naukova Dumka, Kiev, 218 pp. (Revised English translation: Mathematics and its Applications, **264**, Kluwer, Dordrecht, 1993, \times +278 pp.)
- [11] Korolyuk, V.S., Limnios, N. (2005). Stochastic Systems in Merging Phase Space. Word Scientific, Singapore, xv+331 pp.
- [12] Limnios, N., Swishchuk, A. (2023). Discrete-Time Semi-Markov Random Evolutions and Their Applications. Probability and Its Applications, Birkhäuser/Springer, Cham, xvi+198 pp.
- [13] Meyn, S.P., Tweedie, R.L. (2009). Markov Chains and Stochastic Stability. Cambridge Mathematical Library, Cambridge University Press, xxviii+594 pp. (Second extended edition of Markov Chains and Stochastic Stability. Communications and Control Engineering, Springer, London, 1993).
- [14] Doeblin, W. (1940). Éléments d'une théorie générale des chaînes simples constantes de Markoff. Ann. École Norm., **57**, no. 3, 61–111.
- [15] Lindvall, T. (1992). Lectures on the Coupling Method. Wiley Series in Probability and Statistics Applied Probability and Statistics Section, Wiley, New York, xiv+257 pp. (Reprinted by Dover, Mineola, NY, 2002).
- [16] Thorisson, H. (2000). Coupling, Stationarity and Regeneration. Probability and its Applications, Springer, New York, xiv+517 pp. =

Additional References

- [17] Silvestrov, D.S. (1983/1984). Method of a single probability space in ergodic theorems for regenerative processes. Math. Operat. Statist., Ser. Optim. 1: **14**, 285–299, 2: **15**, 601–612, 3: **15**, 613–622.
- [18] Silvestrov, D.S. (1980). Semi-Markov Processes with a Discrete State Space. Library for Engineers in Reliability, Sovetskoe Radio, Moscow, 272 pp.
- [19] Silvestrov, D.S. (1996). Recurrence relations for generalised hitting times for semi-Markov processes. Ann. Appl. Probab., **6**, no. 2, 617–649.
- [20] Kovalenko, I.N. (1977). Limit theorems for reliability theory. Kibernetika, no. 6, 106–116 (English translation in Cybern. Syst. Anal., 13, no. 6, 902–914).
- [21] Athreya, K.B., McDonald, D., Ney, P. (1978). Limit theorems for semi-Markov processes and renewal theory for Markov chains. Ann. Probab., **6**, no. 5, 788–797.
- [22] Nummelin, E. (1978). A splitting techniques for certain Markov chains and its applications. Z. Wahrsch. Verw. Gebiete, **43**, no. 4, 309–318.
- [23] Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators. Cambridge Tracts in Mathematics, **83**, Cambridge University Press, Cambridge, 170 pp.

THANK YOU FOR YOUR ATTENTION!