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Personalized Medicine
Intro

Whatis it?
* Tailors medical care to individual characteristics
* Demographics, life-style, genetics, etc.

Alternative
* One size fits all. ONE SiZE MADE TO
FiTS ALL MEASURE
Benefits

* Improves patient outcomes
» Improves equality in care outcomes

Operational complexities
* Hard to implement
 Training burden
* Risk of inconsistency
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Research question
Optimal balance: trade-off

More personalization: Benefits:
* T effectiveness » Simplify clinical decision-making
T Fairness and equity in care outcomes * Reduce complexity
* T complexity * Preserves somelevel of personalization
« | efficiency
But...
Potential solution « May lead to inequality of health outcomes

 Create a manageable number of patient groups
» Handful of policies

Nested optimization

» Aggregate population into A groups

» Optimize and apply the sametreatment strategy
for a given group
» Multi-model optimization
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Research question
Optimal balance

Current aggregation methods
» Based on clinical intuition rather than
data/evidence
« Based on disease prognosis
* Intuition is often unaligned with operational
decision
« May overlook fairness and introduce
disparities/bias

Proposed Strategy
 Create optimal clustering of patient profiles

* Interpretable, systematic, and data-driven
» Consider fairness

« Minimize deviations from care targets

* timely treatment delivery

Case study
* Head and neck cancer
 Optimal post-treatment monitoring
» Care target
» Cancer recurrence detection delay
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Clinical context
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Clinical context
Head and neck cancer

Incidence/prevalence
* 1 million new cases world-wide, annually
« 39 most common cancer
* HPV pandemic

Head and Neck Cancer

’A&%Sinuses
Recurrence Nasal (k
o) . . ’ \cavity“ \@
* 50% one-year mortality in case of recurrence ol S INasopharynx
* Loco-regional or distant metastasis Tongoe )| [orophaym  [pparyny
_ salivary~
Mortality and recurrence gland
i Larynx ‘ -Hypopharynx
* Demographics \
 Disease history 0 -
] Cleveland Trachea - Esophagus
* Lifestyle |

Heterogeneity:
» b-year recurrence rate:
* Between 6% to 60%
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Clinical context
Pathways

Frequent monitoring

* Inform on patient’s current health

* Inform on disease progression
 Revise surveillance plan

Benefits
 Early detection
* Improved survival
4 weeks reduction in delay
* 10% less mortality
 Improved quality of life

Challenges:

» Capacity constraints

« Economic burden

» Adverse patient outcomes
* Stress: false-positives
 Inconvenience and pain
» Exposure to radiation
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Clinical context
Pathways

CT-Scan
» Costly
* High false-positive/negative rate

 Loco-regional or metastasis

Newer technology: ctDNA

* Simple blood test

» Cheaper

» Ease of access and implementation

* Improved adherence

 High accuracy (sensitivity, specificity)

* Detect radiologically occult (undetectable) recurrence
* 4 Mo in advance

» Cannot delineate loco-regional or metastasis
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Research gap
Operational question

How to integrate ctDNA?
* No data-driven guideline

Operational questions:

Timing Respond to test result
* First test » Confirmatory tests
* Subsequent tests » CT to localize
* Biopsy to confirm
Modality * Revise test schedule

« ctDNA or CT scan?
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Imperial Business School

Evaluation of status-quo.
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Clinical context
Current guidelines

NCCN guideline, v1.2021:
 PET/CT scan: 3 Mo
e CT scan: 6 Mo,9 Mo,1Y,18 Mo, 2Y,3Y

eviCore guideline, v2.1:
 PET/CT scan: 3 Mo
e CTscan:6 Mo, 1-3Y

Kowalchuk et al. 2023:
* CtDNA: every 3 Mo, in years 1-2

Berger et al. 2022:
* CtDNA: every 3 Mo in years 1-2
» CtDNA: every 6 Mo in years =3

CcT CT CT

CT CT

NCCN{ PCT CT CT CT
>
& Evicore - P/ICT CT cT
£
§ Kowalchuk et al. (2022) - I I I I
Berger et al. (2022) - I | | I
0 3 6 9 12
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Clinical context
Evaluation

Outcomes

e System outcome
» Testing cost

» Patient outcomes

* Recurrence detection delay

* False positive rate

Method
* Monte-Carlo simulation

Disease model
» Beesley et al. 2021

* Multi-state continuous-time semi-Markov model

Imperial Business School
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Evaluation

Hidden Semi-Markov model

Q JAMA Network-

Initial states

No persistent disease

Treated @D

b=

(6) Persistent disease

I A O B ot e G I UL
(4) Distant
metastasis
(2) Cured (s
Events after baseline (c6
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Evaluation
Hazard ratios

E Persistence probability (C1) Noncured probability (C2) Locoregional recurrence (C3) IE\ Distant metastasis (C4)
Age
. . - |
Decades —o— e -
<65y R
>65y —o—
Sex: female ——— — —
ACE :
Mild _.___‘— _.__—0—
Moderate e '
Severe +‘
Moderate/severe _._' :
Smoking :
Current ——
Former -
. ; P —— —e— ——
p16 nega“VQ P —— e —
T : :
—— —e— ———
- —— ———— ——
3 : —e— ———— —e—
: Po—e— —— . ——
log(MTV) — —0— —o—
: ‘
rECE: yes — —0— —
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Clinical context
NCCN Guideline Evaluation

Testing cost Recurrence detection delay
« $26,700 per patient * Approx. 6 Mo
« Care target for personalizing
False positive rate
* 56%

10.0%

1.5%1 - g —

5.0%1

A ALl

0.0%

Distribution

4 5 6 7 8 9
Detection Delay (Months)
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Optimize monitorin
guideline
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Optimization model
Personalized model

Epochs: Objective:
* Monthly * Minimize monitoring cost
Actions: Constraint:
* CT scan * Recurrence detection delay:
* DNA test * Target: 6 Mo
» Wait
_ Model:
Horizon: » Partially observable Markov Decision model
* 3-oyears * Constrained POMDP

Locoregional
recurrence

i No recurrence J' ;l Death

Metastasis
recurrence
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Optimization model
Personalized model

Core states

* Hidden:
* Recurrence-free
» Loco-regional recurrence
* Metastatic recurrence

* Death

Imperial Business School

Initial states

Treated

G

(3) Locoregional <:>
'+ {5t e _@?D_> recurrence /./ (5) Death
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— No persistent disease }—@2 ﬁgtgissttaas?;
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recurrence
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Optimization model
Personalized model

Markov model

» Converted semi-Markov model to an equivalent Markov model
« Match occupancy measures
* Non-stationary core state transitions

Multi-reward Markov model

* Monitoring costs
» Delay costs

* One time unit for being in recurrence states, undetected

Constrained POMDP Solution
» Weighted sum of the two objectives
 Fine-tune the weight to match the target delay

» Apply binary search

Imperial Business School
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Personalized model
Optimal policy

B CT-scan B ctDNA B Wait I

Month 12 Policy

hy
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Imperial Business School

Markov, Semi-Markov Models and Associated Fields | Université Paris Sorbonne | July 2025 22



Personalized model
Optimal policy

B CT-scan B ctDNA B Wait I

Year 1 Year 2 Year 3

Month 12 Policy Month 24 Policy Month 36 Policy

h| h| h|

® E B ) ® & B

Metastasis (hy,) Metastasis (hy,) Metastasis (hy,)
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Personalized model
Policy in action

Observation
* Only DNA test until test becomes positive

Implications
 POMDP policy can be converted to a DNA test schedule

» Use DNA test to detect recurrence, use CT scan to pinpoint

Why?
 Higher sensitivity/specificity
« Cost-effective

Population I I I I I I

Policy

T T T T T T T T T T T
0 3 6 9 12 15 18 21 24 27 30 33

Surveillance Schedule (Months)
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Imperial Business School

Personalization
and trade-off
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Optimization model
Personalized model

Age
Decades
<65y
>65y

Sex: female

ACE
Mild
Moderate
Severe
Moderate/severe

Anemia: yes

Smoking
Current
Former

pl6: negative

cT
2
3
4

cN
2
3

log(MTV)

rECE: yes
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6 Categorical variables: Challenges:
» Sex: 2 « > 960 total policies
* ACE: 5 * Hard to implement
 Anemia 2  Diminishing return in additional
* Smoking: 2 stratification
e Cancer stage: 12
*T: 4
*N:3

1 Continuous variable:
* Age
e Categorize: <b2Y, >b2Y
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Optimization model
Trade-off

Balancing objective:
 # of policies
* Inequality of patient outcomes
» Detection delay target: 6 Mo
* Loss: positive deviation from target
« Weighted average positive deviation from target

Approach:

» Optimal sub-population aggregation
» Optimal structured set partitioning
* Interpretable
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Trade-off model
Population partitioning

All patient profiles

Unstructured partitioning ( )
* Assignment (XX X o000 o
« Patients to partitions ccce?® ecoe o®
Partition 1 Partition 2 Partition k
Structured partitioning: ( Stage
» Based on covariates Others

~
3
> 52+
Never < 52

6 o
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Trade-off model
Nested optimization

1. Choose partitions

2. For each partition: solve multi-model CPOMDP:
» Each patient profile, one model
* Hence multi-model CPOMDP
* One policy across all models
* Policy agnostic to stochastic process differences
* Minimize average partition cost
» Constraint: average within-partition delay < 6 Mo

Solution:
* Mixed integer LP

Imperial Business School
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Trade-off model
Partitioning loss

Outcome

* Inequality of patient outcomes
» Weighted average positive deviation
« Patient profile weight in the population

Mathematical model:

Imperial Business School

in 3, 2w (4 =)
Tp

PEQ XEP
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Trade-off model
Within-partition optimization

Multi-model CPOMDP

Multi-model optimization

» Uncertain model parameters
 Limited data, system changes

» Heterogenous dynamics/population

Mathematical modeling:

» Two stage stochastic optimization
» Stage 1: fix action
 Stage 2: true model unravels

* Robust and non-robust objectives
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Trade-off model
Within-partition optimization

Multi-model MDP

« Admits deterministic policies

» Mixed integer linear programming
 Stage 1: decide actions per state/time
* Stage 2: determine value functions

Multi-model POMDPs
* Uncountable belief states

Approximation methods
» Create a population core state transition
matrices
» Weighted average

Bayes-adaptive approach
* Distribution weight in period 1
* Occupancy informed Bayes-adaptive weights
thenceforth
* Reproduce the same occupancy measures in
expectation
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Tractability and
Approximation Methods



Trade-off model
Problem complexity

Problem is intractable

Unstructured partitioning
* NP-complete
* Many cases NP-hard.
* Require exponential # of costs
« For all partitioning configurations

Partitioning costs
e Multi-model MDP is NP-Hard
» Steimle et al. 2021
* Our case: constrained POMDP

Structured partitioning
* Partitioning follows decision tree
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Approximation methods
Solution approach: clustering

Interpretable clustering
* Partition to Aclusters minimizing average dissimilarity

Clustering idea

» Aggregate based on similarityin stochastic process
« Hazard ratio vector
 Average core-sate transition probabilities
« Bayesian core-state transition probabilities

Clustering loss:
 Distance from cluster’s focal point
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Approximation methods
Solution approach: partitioning

Partitioning idea
» Aggregate based on consequence of aggregation of
profiles

* Loss: deviation from target when merged into a o
partition ‘

Inputs: é é}
* Profile covariate matrix, binary

* Profile weights in the population
 Pairwise distance matrix

Objective:
* Partition to Agroups minimizing /nequality proxy
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Partitioning idea
Distance matrix

Pairwise distance matrix:
 Create a 2-member partition with profiles i, j
 Solve a bi-model CPOMDP
 Evaluate optimal policy
* Calc detection delay d;, d;

Cost of aggregating i, j:
v dy = (di—d)"
—~+
*dj; = (d; —d)
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Partitioning idea
Inequality proxy

Objective:
» Minimize weighted average of inequalities

» Across all patients
min 2 Wl-(i-
i
Per partition:

» Weighted average of distance
e From partition members

* Partition weights normalized to 1: wj’

* Inequality proxy:
§; = Z widy;
JEP
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Approximation methods
Optimization approach

Model:

« Adaptation of Bertsimas and Dunn (2017)

e Optimal binary tree
* Mixed integer linear programming model
 Local search: non-linear objectives

Model decides:
* Tree configuration

 Branching

 Each leaf is a partition/cluster
» Constrain or penalize # of leaves
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Partitioning idea
Policies

Robust objectives

» Max of max-deviations (worst case)
* Simple average of max-deviations
» Weighted-average of max-deviations

Non-robust objectives

 Average of Average deviations: simple average
» Weighted average of weighted average deviations

Imperial Business School
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Clusteringidea
Similarity targets

Similarity in stochastic process
» Hazard ratio vector
» Average core-sate transition probabilities
« Bayesian core-state transition probabilities

Similarity in optimal policy
« WIP
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Imperial Business School

Optimal Aggregation
Results
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Results

Inequality: clustering models

Imperial Business School

Average deviation from target (months)

—A—Hazard-Ratios -@-Average-TP -l-Bayesian-TP

0.78
0.76
0.74
0.72

0.7
0.68
0.66
0.64

0.62
0 1 2 3 4 5 6 7

# of Policies
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Results

Inequality: partitioning models

Imperial Business School

Average deviation from target (months)

—&— Max-Max-Dev —@— Average-Max-Dev —— W-Ave-Max-Dev

—eo— Ave-Ave-Dev —e— \W-Ave-W-Ave-Dev - - - Best

0.65

0.55

0.45

0.35

0.25

0.15

# of Policies
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Results
Relative optimality gap

W-Ave-W-Ave-Dev

W-Ave-Max-Dev
Average-Max-Dev

-]
Ave-Ave-Dev | —

e

-]

Max-Max-Dev

0% 10% 20% 30% 40% 50%
Average Relative Optimality Gap
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Results
Optimal partitions, k=2 to 4

k=2

Cluster
=
i i
]
L ]
L ]

T T T T T T T T T T T T
0 3 6 9 12 15 18 21 24 27 30 33 36

Surveillance Schedule (Months)
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Results
Optimal partitions, k=2 to 4
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Results
Optimal partitions, k=2 to 4

Others <Stage> 3

Cluster
oW M
|
|
|
|
I
|
|
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Surveillance Schedule (Months)
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Limitations

Computations:

» Time-consuming for large tree depth

Approximation:

* Proxy vs real objective
« CPOMDP

e Multi-model CPOMDP

Data and evidence:
* Disease model

* More stratification, less data, less confidence
» Confidence in test performance

Imperial Business School
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Conclusion

Challenge:

 Trade-off
 personalized care vs one-size-fits-all
» Complexity vs fairness

Solution:
» Strategic population stratification/aggregation
« Data-driven and systematic
* Interpretable
 optimal tree-based partitioning

Case study:

 post-cancer surveillance
 generalizable beyond the case study
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Takeaway

Smart design of population aggregation/stratification enhances healthcare
delivery by balancing personalization, interpretability, and equality.
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