
Balancing Complexity and Personalization
Personalized Medicine vs. One-Size-Fits-All

Multi-model Sequential Decision Models for Chronic Disease Management

Markov, Semi-Markov Models and Associated Fields

Université Paris Sorbonne, July 2025

Reza Skandari (PhD), Narges Mohammadi, Niloofar Zamani

Imperial Business School

Alexander Pearson (MD, PhD), Oncologist

University of Chicago



Imperial Business School

Personalized Medicine 

What is it?

• Tailors medical care to individual characteristics

• Demographics, life-style, genetics, etc.

Alternative

• One size fits all.

Benefits

• Improves patient outcomes

• Improves equality in care outcomes

Operational complexities

• Hard to implement

• Training burden

• Risk of inconsistency
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Intro
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Research question

More personalization:

• ↑ effectiveness

• ↑ Fairness and equity in care outcomes

• ↑ complexity

• ↓ efficiency

Potential solution

• Create a manageable number of patient groups

• Handful of policies

Nested optimization

• Aggregate population into k groups

• Optimize and apply the same treatment strategy 

for a given group

• Multi-model optimization
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Optimal balance: trade-off

Benefits:

• Simplify clinical decision-making

• Reduce complexity

• Preserves some level of personalization 

But…

• May lead to inequality of health outcomes
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Research question

Current aggregation methods

• Based on clinical intuition rather than 

data/evidence

• Based on disease prognosis

• Intuition is often unaligned with operational 

decision

• May overlook fairness and introduce 

disparities/bias

Proposed Strategy

• Create optimal clustering of patient profiles

• Interpretable, systematic,  and data-driven

• Consider fairness

• Minimize deviations from care targets

• timely treatment delivery

Case study

• Head and neck cancer

• Optimal post-treatment monitoring

• Care target

• Cancer recurrence detection delay
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Optimal balance
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Clinical context
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Clinical context

Incidence/prevalence

• 1 million new cases world-wide, annually

• 3rd   most common cancer

• HPV pandemic

Recurrence

• 50% one-year mortality in case of recurrence

• Loco-regional or distant metastasis

Mortality and recurrence

• Demographics

• Disease history

• Lifestyle

Heterogeneity:

• 5-year recurrence rate:

• Between 6% to 60%
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Head and neck cancer
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Clinical context

Frequent monitoring

• Inform on patient’s current health 

• Inform on disease progression 

• Revise surveillance plan

Benefits

• Early detection 

• Improved survival 

• 4 weeks reduction in delay

• 10% less mortality

• Improved quality of life

Challenges:

• Capacity constraints

• Economic burden

• Adverse patient outcomes

• Stress: false-positives

• Inconvenience and pain

• Exposure to radiation
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Pathways
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Clinical context

CT-Scan

• Costly

• High false-positive/negative rate

• Pinpoints recurrence location
• Loco-regional or metastasis

Newer technology: ctDNA

• Simple blood test

• Cheaper

• Ease of access and implementation

• Improved adherence

• High accuracy (sensitivity, specificity)

• Detect radiologically occult (undetectable) recurrence

• 4 Mo in advance

• Cannot delineate loco-regional or metastasis
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Pathways
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Research gap
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Operational question

How to integrate ctDNA?

• No data-driven guideline

Operational questions:

Timing

• First test

• Subsequent tests

Modality

• ctDNA or CT scan?

Respond to test result

• Confirmatory tests

• CT to localize

• Biopsy to confirm

• Revise test schedule
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Evaluation of status-quo.
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Clinical context

NCCN guideline, v1.2021:

• PET/CT scan: 3 Mo

• CT scan: 6 Mo, 9 Mo, 1 Y, 18 Mo, 2 Y, 3 Y

eviCore guideline, v2.1 :

• PET/CT scan: 3 Mo

• CT scan : 6 Mo, 1-3 Y

Kowalchuk et al. 2023:

• ctDNA: every 3 Mo, in years 1-2

Berger et al. 2022:

• ctDNA: every 3 Mo in years 1–2

• ctDNA: every 6 Mo in years ≥3
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Current guidelines
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Clinical context

Outcomes

• System outcome

• Testing cost

• Patient outcomes

• Recurrence detection delay

• False positive rate

Method

• Monte-Carlo simulation

Disease model

• Beesley et al. 2021

• Multi-state continuous-time semi-Markov model
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Evaluation
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Evaluation
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Hidden Semi-Markov model
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Evaluation
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Hazard ratios
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Clinical context

Testing cost

• $26,700 per patient

False positive rate

• 56%

Recurrence detection delay

• Approx. 6 Mo

• Care target for personalizing
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NCCN Guideline Evaluation
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Optimize monitoring 
guideline
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Optimization model

Epochs:

• Monthly

Actions:

• CT scan

• DNA test

• Wait

Horizon:

• 3-5 years

Objective:

• Minimize monitoring cost

Constraint:

• Recurrence detection delay: 

• Target: 6 Mo

Model:

• Partially observable Markov Decision model

• Constrained POMDP
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Personalized model
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Optimization model

Core states

• Hidden:

• Recurrence-free

• Loco-regional recurrence

• Metastatic recurrence

• Death
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Optimization model

Markov model

• Converted semi-Markov model to an equivalent Markov model

• Match occupancy measures

• Non-stationary core state transitions

Multi-reward Markov model

• Monitoring costs

• Delay costs

• One time unit for being in recurrence states, undetected

Constrained POMDP Solution

• Weighted sum of the two objectives

• Fine-tune the weight to match the target delay

• Apply binary search
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Personalized model
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Personalized model
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Optimal policy

L

N

M

[N, L, M]=[30%, 50%, 20%]
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Personalized model

Markov, Semi-Markov Models and Associated Fields | Université Paris Sorbonne | July 2025 23

Optimal policy

Year 1 Year 2 Year 3
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Personalized model

Observation

• Only DNA test until test becomes positive

Implications

• POMDP policy can be converted to a DNA test schedule

• Use DNA test to detect recurrence, use CT scan to pinpoint

Why?

• Higher sensitivity/specificity

• Cost-effective
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Policy in action



Imperial Business School

Personalization 
and trade-off
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Optimization model

6 Categorical variables:

• Sex: 2 

• ACE: 5

• Anemia 2

• Smoking: 2

• Cancer stage: 12

• T: 4

• N: 3

1 Continuous variable:

• Age

• Categorize: <52 Y, ≥52 Y

Challenges:

• ≥ 960 total policies

• Hard to implement

• Diminishing return in additional 

stratification
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Personalized model
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Optimization model

Balancing objective:

• # of policies

• Inequality of patient outcomes

• Detection delay target: 6 Mo

• Loss: positive deviation from target

• Weighted average positive deviation from target

Approach:

• Optimal sub-population aggregation

• Optimal structured set partitioning

• Interpretable
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Trade-off
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Trade-off model
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Population partitioning

Unstructured partitioning

• Assignment

• Patients to partitions

Structured partitioning:

• Based on covariates

• Follow a decision tree

• Interpretable/explainable
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Trade-off model

1. Choose partitions

2. For each partition: solve multi-model CPOMDP:

• Each patient profile, one model

• Hence multi-model CPOMDP

• One policy across all models

• Policy agnostic to stochastic process differences

• Minimize average partition cost

• Constraint: average within-partition delay ≤ 6 Mo

Solution:

• Mixed integer LP
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Nested optimization
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Trade-off model

Outcome

• Inequality of patient outcomes

• Weighted average positive deviation

• Patient profile weight in the population

Mathematical model:
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Partitioning loss

min
𝒬,𝜋𝒫

∗
෍

𝒫∈𝒬

෍

𝑥∈𝒫

𝑤𝑥 . 𝑑𝑥
𝜋𝒫
∗

− ҧ𝑑
+
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Trade-off model

Multi-model CPOMDP

Multi-model optimization

• Uncertain model parameters

• Limited data, system changes

• Heterogenous dynamics/population

Mathematical modeling:

• Two stage stochastic optimization

• Stage 1: fix action

• Stage 2: true model unravels

• Robust and non-robust objectives
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Within-partition optimization
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Trade-off model

Multi-model MDP

• Admits deterministic policies

• Mixed integer linear programming

• Stage 1: decide actions per state/time

• Stage 2: determine value functions

Multi-model POMDPs

• Uncountable belief states

Approximation methods

• Create a population core state transition 

matrices

• Weighted average

Bayes-adaptive approach

• Distribution weight in period 1

• Occupancy informed Bayes-adaptive weights 

thenceforth

• Reproduce the same occupancy measures in 

expectation
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Within-partition optimization
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Tractability and 
Approximation Methods
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Trade-off model

Problem is intractable

Unstructured partitioning

• NP-complete

• Many cases NP-hard.

• Require exponential # of costs

• For all partitioning configurations

Partitioning costs

• Multi-model MDP is NP-Hard

• Steimle et al. 2021

• Our case: constrained POMDP

Structured partitioning

• Partitioning follows decision tree
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Problem complexity
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Approximation methods

Interpretable clustering

• Partition to k clusters minimizing average dissimilarity

Clustering idea

• Aggregate based on similarity in stochastic process

• Hazard ratio vector

• Average core-sate transition probabilities

• Bayesian core-state transition probabilities

Clustering loss:

• Distance from cluster’s focal point
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Solution approach: clustering
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Approximation methods

Partitioning idea

• Aggregate based on consequence of aggregation of 

profiles

• Loss: deviation from target when merged into a 

partition

Inputs:

• Profile covariate matrix, binary

• Profile weights in the population

• Pairwise distance matrix

Objective:

• Partition to k groups minimizing inequality proxy
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Solution approach: partitioning
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Partitioning idea

Pairwise distance matrix:

• Create a 2-member partition with profiles 𝑖, 𝑗

• Solve a bi-model CPOMDP

• Evaluate optimal policy

• Calc detection delay 𝑑𝑖, 𝑑𝑗

Cost of aggregating 𝑖, 𝑗: 

• 𝑑𝑖𝑗 = 𝑑𝑖 − ҧ𝑑
+

• 𝑑𝑗𝑖 = 𝑑𝑗 − ҧ𝑑
+
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Distance matrix



Imperial Business School

Partitioning idea

Objective:

• Minimize weighted average of inequalities

• Across all patients

min෍

𝑖

𝑤𝑖
෡𝛿𝑖

Per partition:

• Weighted average of distance

• From partition members

• Partition weights normalized to 1: 𝑤𝑗
′

• Inequality proxy: 

෡𝛿𝑖 = ෍

𝑗∈𝒫

𝑤𝑗
′𝑑𝑖𝑗
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Inequality proxy
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Approximation methods

Model:

• Adaptation of Bertsimas and Dunn (2017)

• Optimal binary tree

• Mixed integer linear programming model

• Local search: non-linear objectives

Model decides:

• Tree configuration

• Branching

• Each leaf is a partition/cluster

• Constrain or penalize # of leaves
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Optimization approach
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Partitioning idea

Robust objectives

• Max of max-deviations (worst case) 

• Simple average of max-deviations

• Weighted-average of max-deviations

Non-robust objectives

• Average of Average deviations: simple average

• Weighted average of weighted average deviations
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Policies
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Clustering idea

Similarity in stochastic process

• Hazard ratio vector

• Average core-sate transition probabilities

• Bayesian core-state transition probabilities

Similarity in optimal policy

• WIP
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Similarity targets



Imperial Business School

Optimal Aggregation 
Results
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Results
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Inequality: clustering models
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Results
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Inequality: partitioning models
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Results

Markov, Semi-Markov Models and Associated Fields | Université Paris Sorbonne | July 2025 45

Relative optimality gap

0% 10% 20% 30% 40% 50% 60%

Max-Max-Dev

Average-Max-Dev

W-Ave-Max-Dev

Ave-Ave-Dev

W-Ave-W-Ave-Dev

Average Relative Optimality Gap



Imperial Business School

Results
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Optimal partitions, k=2 to 4

k=2 
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Results
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Optimal partitions, k=2 to 4

k=3 
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Results
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Optimal partitions, k=2 to 4

k=4 
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Limitations

Computations:

• Time-consuming for large tree depth

Approximation:

• Proxy vs real objective

• CPOMDP

• Multi-model CPOMDP

Data and evidence:

• Disease model

• More stratification, less data, less confidence

• Confidence in test performance
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Conclusion

Challenge:

• Trade-off

• personalized care vs one-size-fits-all

• Complexity vs fairness

Solution:

• Strategic population stratification/aggregation

• Data-driven and systematic

• Interpretable

• optimal tree-based partitioning

Case study:

• post-cancer surveillance

• generalizable beyond the case study
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Takeaway

Smart design of population aggregation/stratification enhances healthcare 
delivery by balancing personalization, interpretability, and equality.
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