

Balancing Complexity and Personalization

Personalized Medicine vs. One-Size-Fits-All

Multi-model Sequential Decision Models for Chronic Disease Management

Reza Skandari (PhD), Narges Mohammadi, Niloofar Zamani **Imperial Business School**

Alexander Pearson (MD, PhD), Oncologist **University of Chicago**

Markov, Semi-Markov Models and Associated Fields Université Paris Sorbonne, July 2025

Personalized Medicine

Intro

What is it?

- Tailors medical care to individual characteristics
- Demographics, life-style, genetics, etc.

Alternative

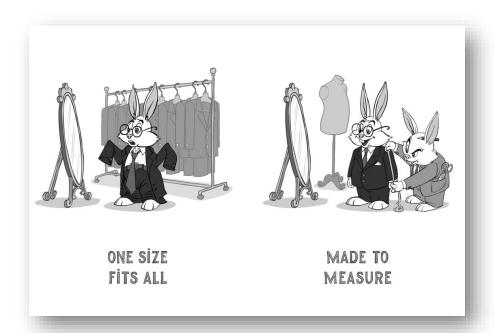
One size fits all.

Benefits

- Improves patient outcomes
- Improves equality in care outcomes

Operational complexities

- Hard to implement
- Training burden
- Risk of inconsistency



Research question

Optimal balance: trade-off

More personalization:

- ↑ effectiveness
- ↑ Fairness and equity in care outcomes
- ↑ complexity
 - ↓ efficiency

Potential solution

- Create a manageable number of patient groups
 - Handful of policies

Nested optimization

- Aggregate population into kgroups
- Optimize and apply the same treatment strategy for a given group
 - Multi-model optimization

Benefits:

- Simplify clinical decision-making
 - Reduce complexity
- Preserves *some* level of personalization

But...

May lead to inequality of health outcomes

Research question

Optimal balance

Current aggregation methods

- Based on clinical intuition rather than data/evidence
 - Based on disease prognosis
 - Intuition is often unaligned with operational decision
 - May overlook fairness and introduce disparities/bias

Proposed Strategy

- Create optimal clustering of patient profiles
 - Interpretable, systematic, and data-driven
- Consider fairness
 - Minimize deviations from care targets
 - timely treatment delivery

Case study

- Head and neck cancer
- Optimal post-treatment monitoring
- Care target
 - Cancer recurrence detection delay

Clinical context

Clinical context Head and neck cancer

Incidence/prevalence

- 1 million *new* cases world-wide, annually
- 3rd most common cancer
 - HPV pandemic

Recurrence

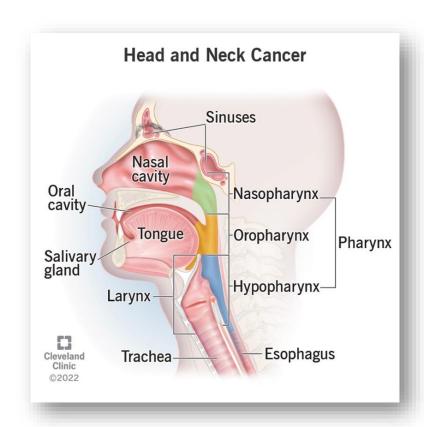
- 50% one-year mortality in case of recurrence
 - Loco-regional or distant metastasis

Mortality and recurrence

- Demographics
- Disease history
- Lifestyle

Heterogeneity:

- 5-year recurrence rate:
 - Between 6% to 60%



Clinical context

Pathways

Frequent monitoring

- Inform on patient's current health
- Inform on disease progression
 - Revise surveillance plan

Benefits

- Early detection
- Improved survival
 - 4 weeks reduction in delay
 - 10% less mortality
- Improved quality of life

Challenges:

- Capacity constraints
- Economic burden
- Adverse patient outcomes
 - Stress: false-positives
 - Inconvenience and pain
 - Exposure to radiation

Clinical context

Pathways

CT-Scan

- Costly
- High false-positive/negative rate
- Pinpoints recurrence location
 - Loco-regional or metastasis

Newer technology: ctDNA

- Simple blood test
- Cheaper
- Ease of access and implementation
- Improved adherence
- High accuracy (sensitivity, specificity)
- Detect radiologically occult (undetectable) recurrence
 - 4 Mo in advance
- Cannot delineate loco-regional or metastasis

Research gap

Operational question

How to integrate ctDNA?

No data-driven guideline

Operational questions:

Timing

- First test
- Subsequent tests

Modality

ctDNA or CT scan?

Respond to test result

- Confirmatory tests
 - CT to localize
 - Biopsy to confirm
- Revise test schedule

Evaluation of status-quo.

Clinical context

Current guidelines

NCCN guideline, v1.2021:

• PET/CT scan: 3 Mo

CT scan: 6 Mo, 9 Mo, 1 Y, 18 Mo, 2 Y, 3 Y

eviCore guideline, v2.1:

• PET/CT scan: 3 Mo

• CT scan: 6 Mo, 1-3 Y

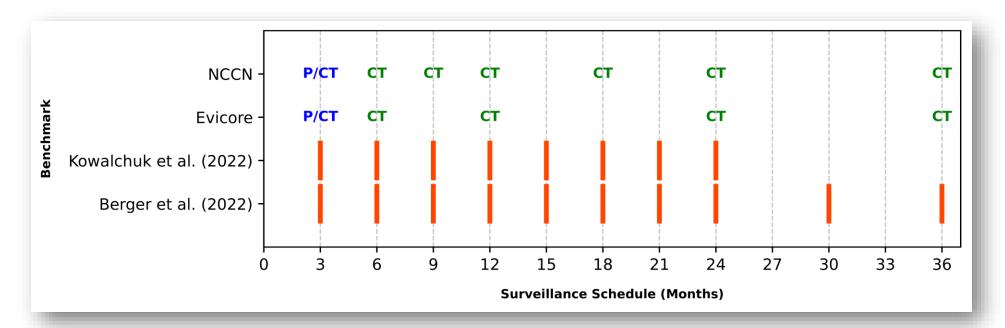
Kowalchuk et al. 2023:

ctDNA: every 3 Mo, in years 1-2

Berger et al. 2022:

ctDNA: every 3 Mo in years 1–2

ctDNA: every 6 Mo in years ≥3



Clinical context

Evaluation

Outcomes

- System outcome
 - Testing cost
- Patient outcomes
 - Recurrence detection delay
 - False positive rate

Method

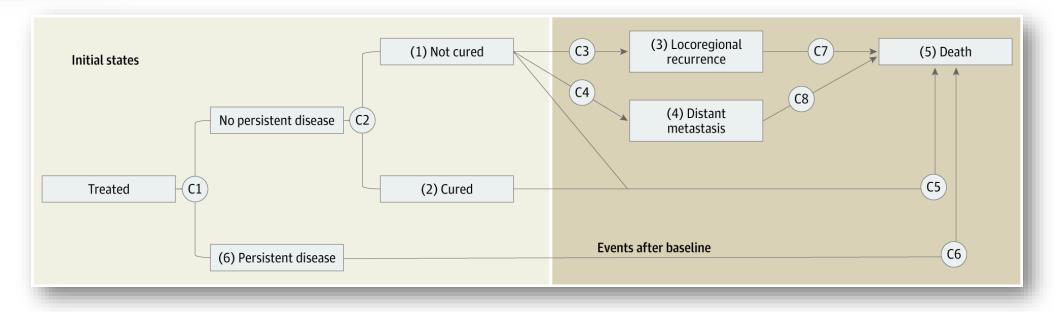
Monte-Carlo simulation

Disease model

- Beesley et al. 2021
- Multi-state continuous-time semi-Markov model

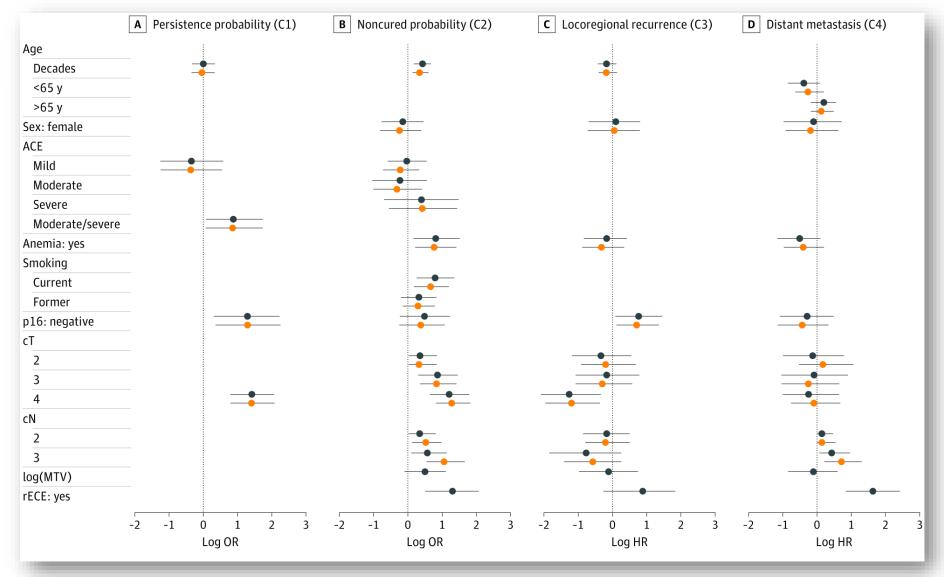
Evaluation

Hidden Semi-Markov model



Evaluation

Hazard ratios



Clinical context

NCCN Guideline Evaluation

Testing cost

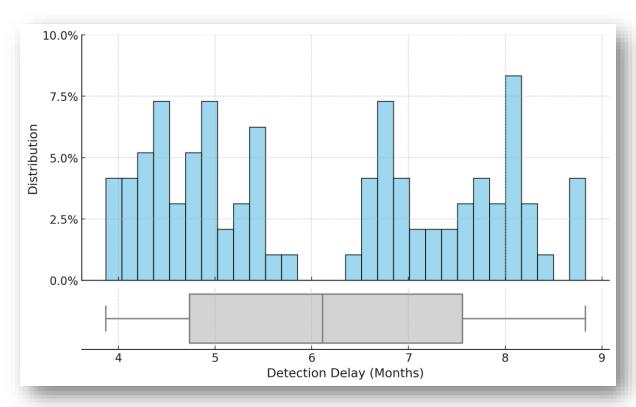
• \$26,700 per patient

False positive rate

• 56%

Recurrence detection delay

- Approx. 6 Mo
 - Care target for personalizing



Optimize monitoring guideline

Personalized model

Epochs:

Monthly

Actions:

- CT scan
- DNA test
- Wait

Horizon:

• 3-5 years

Objective:

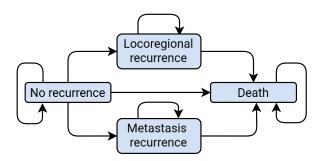
Minimize monitoring cost

Constraint:

- Recurrence detection delay:
 - Target: 6 Mo

Model:

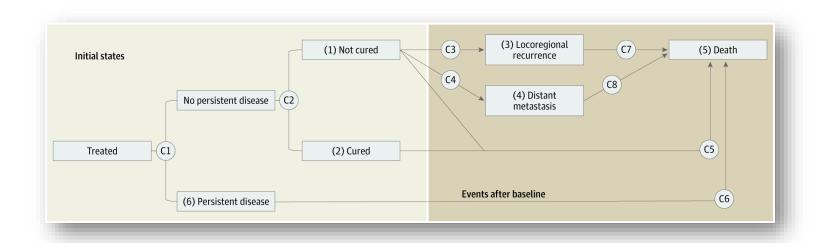
- Partially observable Markov Decision model
- Constrained POMDP

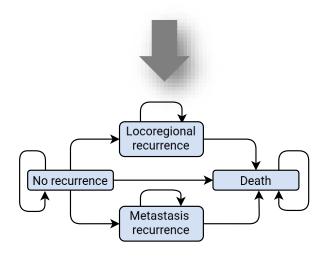


Personalized model

Core states

- Hidden:
 - Recurrence-free
 - Loco-regional recurrence
 - Metastatic recurrence
- Death





Personalized model

Markov model

- Converted semi-Markov model to an equivalent Markov model
 - Match occupancy measures
 - Non-stationary core state transitions

Multi-reward Markov model

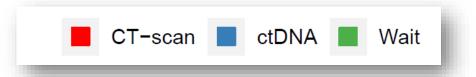
- Monitoring costs
- Delay costs
 - One time unit for being in recurrence states, undetected

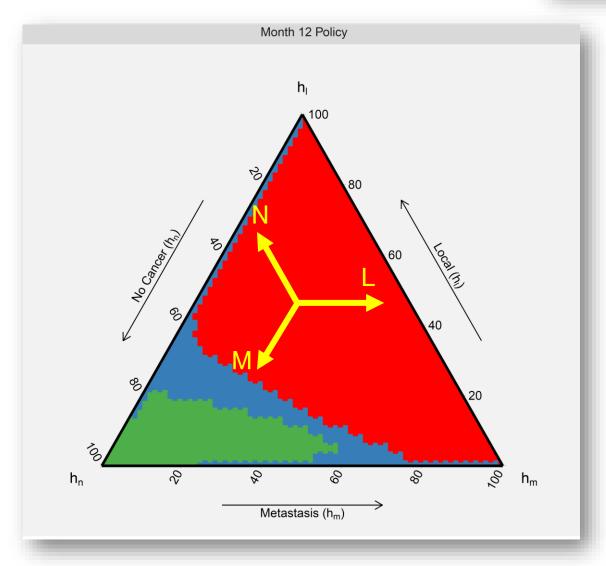
Constrained POMDP Solution

- Weighted sum of the two objectives
- Fine-tune the weight to match the target delay
 - Apply binary search

Personalized model

Optimal policy

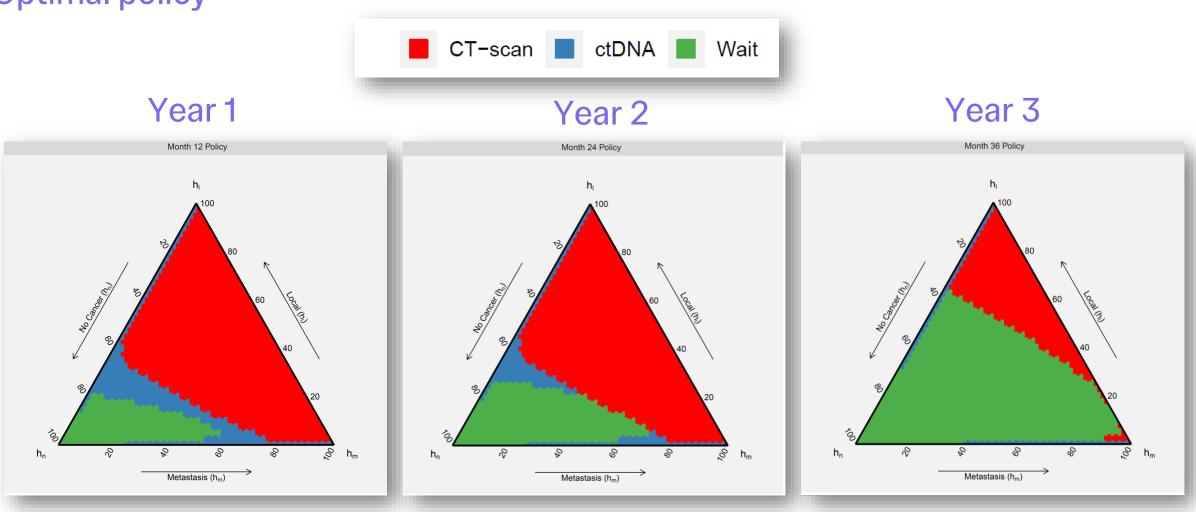




[N, L, M]=[30%, 50%, 20%]

Personalized model

Optimal policy



Personalized model

Policy in action

Observation

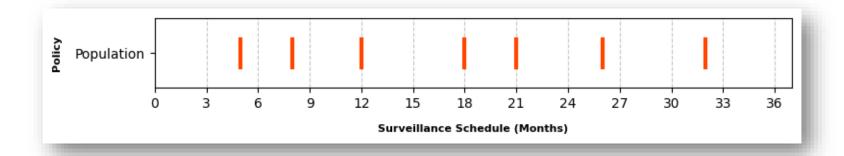
Only DNA test until test becomes positive

Implications

- POMDP policy can be converted to a DNA test schedule
- Use DNA test to detect recurrence, use CT scan to pinpoint

Why?

- Higher sensitivity/specificity
- Cost-effective



Personalization and trade-off

Personalized model

Age
Decades
<65 y
>65 y
Sex: female
ACE
Mild
Moderate
Severe
Moderate/severe
Anemia: yes
Smoking
Current
Former
p16: negative
сТ
2
3
4
cN
2
3
log(MTV)
rECE: yes

6 Categorical variables:

• Sex: 2

• ACE: 5

Anemia 2

• Smoking: 2

• Cancer stage: 12

• T: 4

• N: 3

1 Continuous variable:

Age

Categorize: <52 Y, ≥52 Y

Challenges:

- ≥ 960 total policies
- Hard to implement
- Diminishing return in additional stratification

Trade-off

Balancing objective:

- # of policies
- Inequality of patient outcomes
 - Detection delay target: 6 Mo
 - Loss: positive deviation from target
 - Weighted average positive deviation from target

Approach:

- Optimal sub-population aggregation
 - Optimal structured set partitioning
 - Interpretable

Population partitioning

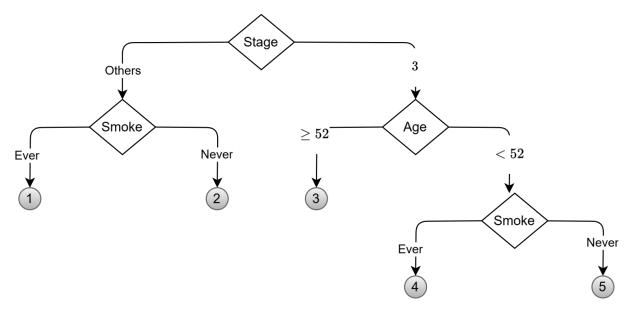
Unstructured partitioning

- Assignment
 - Patients to partitions

Structured partitioning:

- Based on covariates
- Follow a decision tree
- Interpretable/explainable

All patient profiles Partition 1 Partition 2 Partition k



Nested optimization

1. Choose partitions

2. For each partition: solve multi-model CPOMDP:

- Each patient profile, one model
 - Hence multi-model CPOMDP
- One policy across all models
 - Policy agnostic to stochastic process differences
- Minimize average partition cost
 - Constraint: average within-partition delay ≤ 6 Mo

Solution:

Mixed integer LP

Partitioning loss

Outcome

- Inequality of patient outcomes
 - Weighted average positive deviation
 - Patient profile weight in the population

Mathematical model:

$$\min_{\mathcal{Q}, \pi_{\mathcal{P}}^*} \sum_{\mathcal{P} \in \mathcal{O}} \sum_{\chi \in \mathcal{P}} w_{\chi} \cdot \left(d_{\chi}^{\pi_{\mathcal{P}}^*} - \bar{d} \right)^+$$

Within-partition optimization

Multi-model CPOMDP

Multi-model optimization

- Uncertain model parameters
 - Limited data, system changes
- Heterogenous dynamics/population

Mathematical modeling:

- Two stage stochastic optimization
 - Stage 1: fix action
 - Stage 2: true model unravels
- Robust and non-robust objectives

Within-partition optimization

Multi-model MDP

- Admits deterministic policies
- Mixed integer linear programming
 - Stage 1: decide actions per state/time
 - Stage 2: determine value functions

Multi-model POMDPs

Uncountable belief states

Approximation methods

- Create a population core state transition matrices
 - Weighted average

Bayes-adaptive approach

- Distribution weight in period 1
- Occupancy informed Bayes-adaptive weights thenceforth
- Reproduce the same occupancy measures in expectation

Tractability and Approximation Methods

Problem complexity

Problem is intractable

Unstructured partitioning

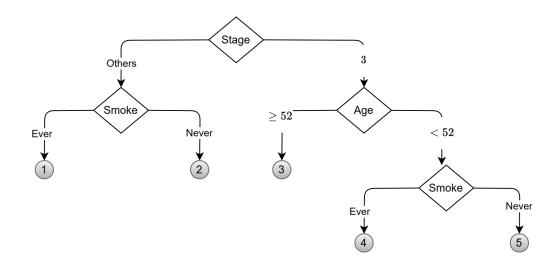
- NP-complete
 - Many cases NP-hard.
- Require exponential # of costs
 - For all partitioning configurations

Partitioning costs

- Multi-model MDP is NP-Hard
 - Steimle et al. 2021
- Our case: constrained POMDP

Structured partitioning

Partitioning follows decision tree



Approximation methods

Solution approach: clustering

Interpretable clustering

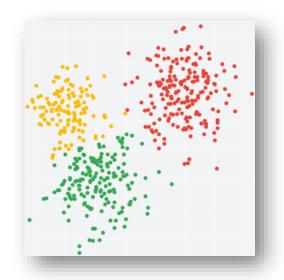
Partition to k clusters minimizing average dissimilarity

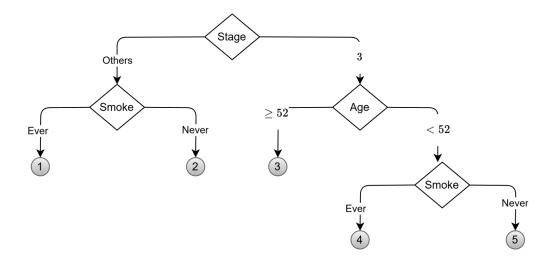
Clustering idea

- Aggregate based on similarity in stochastic process
 - Hazard ratio vector
 - Average core-sate transition probabilities
 - Bayesian core-state transition probabilities

Clustering loss:

Distance from cluster's focal point





Approximation methods

Solution approach: partitioning

Partitioning idea

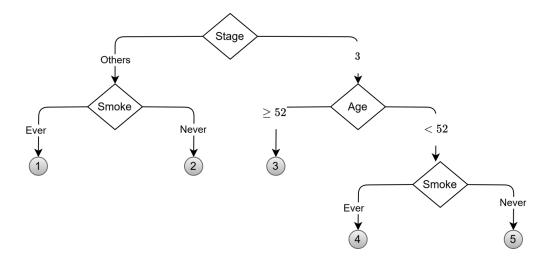
- Aggregate based on consequence of aggregation of profiles
- Loss: deviation from target when merged into a partition

Inputs:

- Profile covariate matrix, binary
- Profile weights in the population
- *Pairwise* distance matrix

Objective:

Partition to k groups minimizing inequality proxy



Partitioning idea

Distance matrix

Pairwise distance matrix:

- Create a 2-member partition with profiles i, j
- Solve a bi-model CPOMDP
- Evaluate optimal policy
 - Calc detection delay d_i , d_j

Cost of aggregating i, j:

- $\cdot d_{ij} = \left(d_i \bar{d} \right)^+$
- $\cdot d_{ji} = \left(d_j \bar{d} \right)^+$

Partitioning idea

Inequality proxy

Objective:

- Minimize weighted average of inequalities
- Across all patients

$$\min \sum_{i} w_{i} \widehat{\delta}_{i}$$

Per partition:

- Weighted average of distance
 - From partition members
- Partition weights normalized to 1: w'_i
- Inequality proxy:

$$\widehat{\delta_i} = \sum_{j \in \mathcal{P}} w_j' d_{ij}$$

Approximation methods

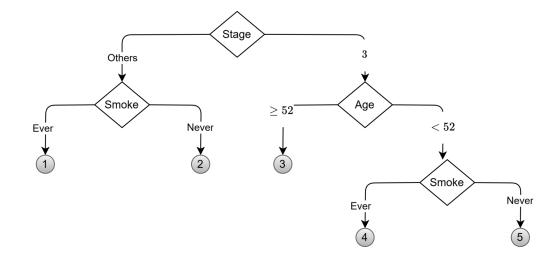
Optimization approach

Model:

- Adaptation of Bertsimas and Dunn (2017)
- Optimal binary tree
 - Mixed integer linear programming model
 - Local search: non-linear objectives

Model decides:

- Tree configuration
 - Branching
 - Each leaf is a partition/cluster
- Constrain or penalize # of leaves



Partitioning idea

Policies

Robust objectives

- Max of max-deviations (worst case)
- Simple average of max-deviations
- Weighted-average of max-deviations

Non-robust objectives

- Average of Average deviations: simple average
- Weighted average of weighted average deviations

Clustering ideaSimilarity targets

Similarity in stochastic process

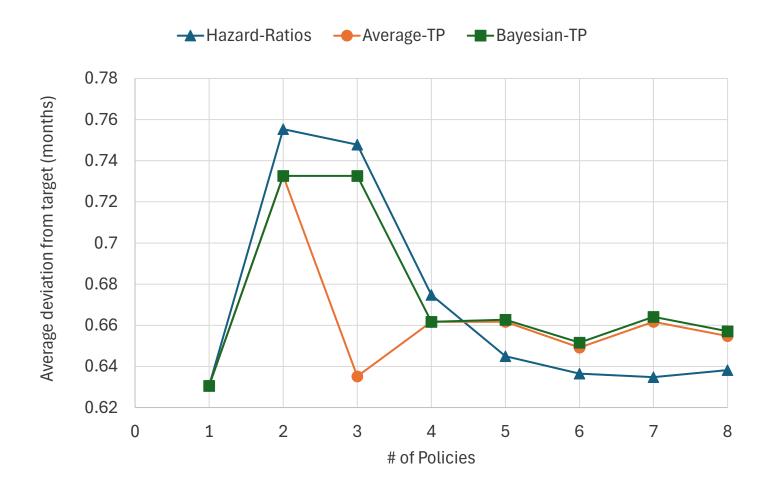
- Hazard ratio vector
- Average core-sate transition probabilities
- Bayesian core-state transition probabilities

Similarity in optimal policy

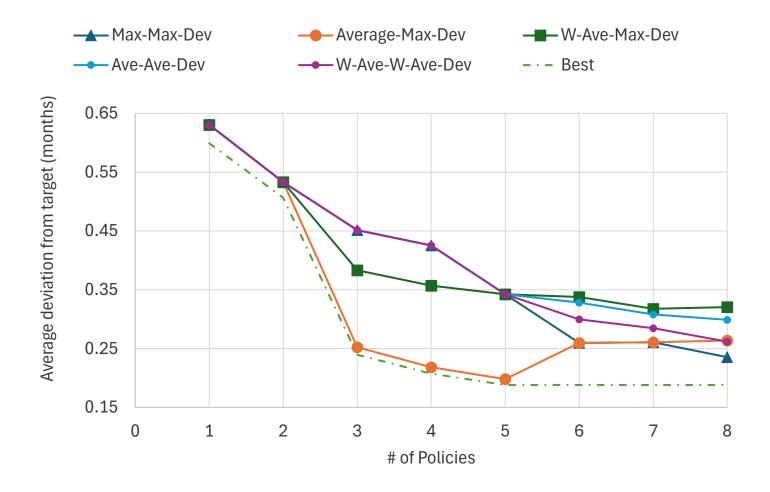
• WIP

Optimal Aggregation Results

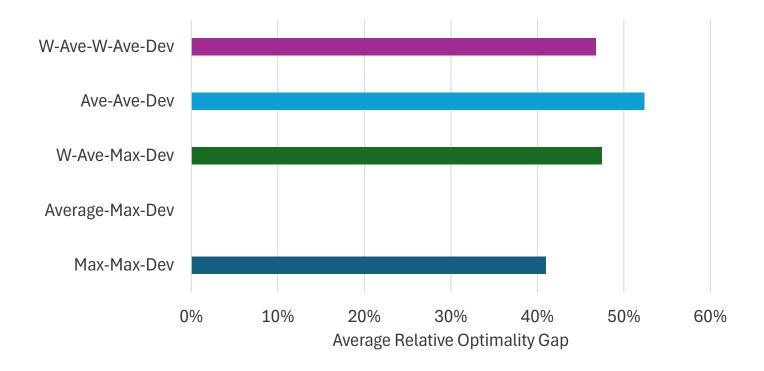
Inequality: clustering models



Inequality: partitioning models

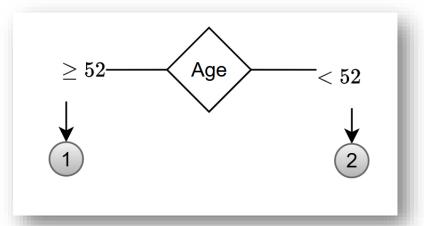


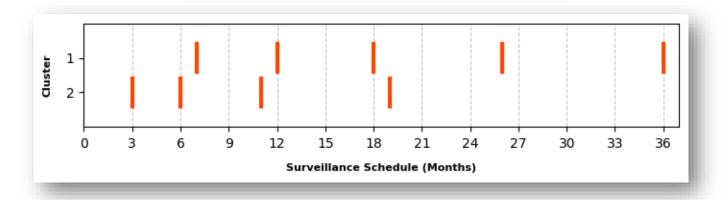
Relative optimality gap



Optimal partitions, k=2 to 4

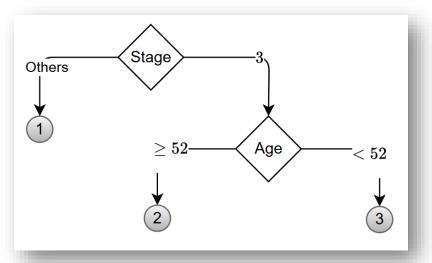
k=2

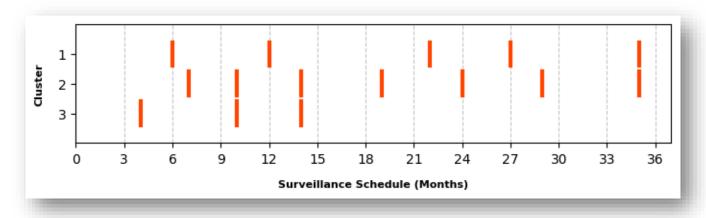




Optimal partitions, k=2 to 4

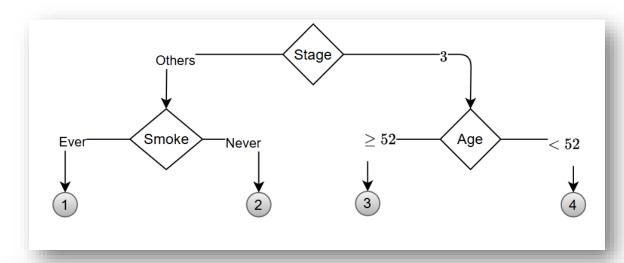
k=3

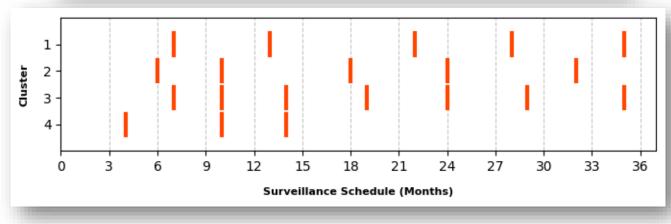




Optimal partitions, k=2 to 4

k=4





Limitations

Computations:

Time-consuming for large tree depth

Approximation:

- Proxy vs real objective
- CPOMDP
- Multi-model CPOMDP

Data and evidence:

- Disease model
 - More stratification, less data, less confidence
- Confidence in test performance

Conclusion

Challenge:

- Trade-off
 - personalized care vs one-size-fits-all
 - Complexity vs fairness

Solution:

- Strategic population stratification/aggregation
- Data-driven and systematic
- Interpretable
- optimal tree-based partitioning

Case study:

- post-cancer surveillance
- generalizable beyond the case study

Takeaway

Smart design of population aggregation/stratification enhances healthcare delivery by balancing personalization, interpretability, and equality.

