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Recap HSMM (explicit duration)

Sn = dwell time of
the n-jump
Jn = the n-state
visited

Markov chain : P(Sn|Jn = k) = Geometric (pk)

Semi-Markov chain (explicit duration) : P(Sn|Jn = k) = any law,
Poisson (λk) +1 for example
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Variability impact of a qualitative covariate (as in GLMM)
Qualitative covariate’s effects can be traited as random, when we are not
particularly interested in the effect of each modality, but rather in the law
of the effects.

Taking account long-range dependency (in HMM) [2]
The observed variables (Yt)t are already not independent
without random effects, but

Cov(Yt ,Yt+h) −→
h→+∞

0

And with random effects in the model, under some (restrictive) conditions

Cov(Yt ,Yt+h) −→
h→+∞

k > 0

3 / 16



Recap HSMM
Why considering random effects in H(S)MM ?

General model of an H(S)MM with mixed effects
Overview of articles

Article details
Conclusion
References

Notation : U = vector of all random effects.
For individual/trajectory number i , Y i = observed process,
Z i = hidden process.

Definition

U is a centred Gaussian vector (most of the time)
Given U = u and the covariates,

1 {(Y i ,Z i )}1≤i≤I are mutually independent
2 (Y i ,Z i ) is an H(S)MM impacted by u and the covariates of

individual number i
3 Every law that compose the H(S)MM (for explicit duration case) :

- emissions laws
- transitions laws
- dwell time laws
- initial state law
belong to the exponential family, and the expected value depends
linearly on u and covariates through a link function.
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Example of HMM, with random effect specific to individual and state
- Emissions laws :

f (y i
t |Z i

t = k,U = u) = exp

(
y i
tη

i
k,u − b(ηik,u)

ϕk
− c(y i

t , ϕk)

)

ηik,u = x i ′β
(1)
k + u

i,(1)
k with u

i,(1)
k ∼ N (0, σ2

k,(1))

−→ In each state k, we have a different GLMM regression.

- Hidden process laws:

P(Z i
t+1 = l|Z i

t = k,U = u) =
exp

(
x i ′β

(2)
k,l + u

i,(2)
k,l

)
1 +

∑
α x i ′β

(2)
k,α + u

i,(2)
k,α

with u
i,(2)
k,l ∼ N (0, σ2

k,l,(2))

−→ In each state k, we have a different GLMM (multinomial) regression.

Each article is modelled as a special case, or with a design vector
for random effects, or with dynamical covariates. 5 / 16
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Example of HSMM, for dwell time only with random effect specific to
individual and state

For the individual/trajectory
number i :
S i
n = dwell time of the

n-jump of the hidden process
J in = the n-state visited by
the hidden process.

- dwell time, modelled by a Poisson:

P(S i
n|J in = k,U = u) = P(λi

k,u) + 1

λi
k,u = exp

(
x i ′βk + uik

)
with uik ∼ N (0, σ2

k)
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Estimation problems

- The integration over random effects is intractable.
- Fixed effects also introduce maximisation difficulties.
These are problems derived from GLMM.

Several estimation methods are available.
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EM Newton-Raphson on

the likelihood

Likelihood

approximation, and

maximisation

Bayesian

- Altman (2007)
Monte-Carlo EM
(MCEM)
HMM
- Chaubert (2008)
Restoration-
Maximisation,
with Monte-Carlo
HSMM

- Maruotti (2011)
no detail
HMM
- Delattre, Lavielle
(2012)
Stochastique Approx-
imation EM (SAEM)
(Monte-Carlo)
HMM

Haji-Maghsoudi & al.
(2021)
Monte-Carlo Newton-
Raphson
HSMM

- Altman (2007)
Gaussian quadrature
HMM

- Altman (2007)
Importance sampling
HMM

- Michelot (2023)
Laplace quadrature
HMM

- Koslik (2024)
Laplace quadrature
with quasi-REML in
addition (integration
over fixed effects of
the likelihood)
HMM

- Michelot (2023)
MCMC Hamiltonian
HMM
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EM
Newton-Raphson on the likelihood
Likelihood approximation, and maximisation

Notation : Y = all observed process, Z = all hidden process, U = all
random effects, f θ = density function.

EM
step E

Q(θ|θ(m)) = Eθ(m)

[
log f θ(y ,Z ,U)|Y = y

]

= Eθ(m)

Eθ(m)

[
log f θ(y ,Z |U)|U,Y = y

]
︸ ︷︷ ︸

=:h
θ(m) (θ,U,y)

|Y = y

+ Eθ(m)

[
log f θ(U)|Y = y

]

(1)

Integration over Z is possible : the function hθ(m)(θ, u, y) can be
calculated analytically by forward-backward for a given u.

−→ Need to approximate integration over U.

step M
Maximisation by Newton-Raphson (or quasi-Newton) most of the time
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EM
Newton-Raphson on the likelihood
Likelihood approximation, and maximisation

EM Altman (2007) Chaubert
(2008)

Maruotti
(2011)

Delattre,
Lavielle (2012)

HMM HSMM HMM HMM
random effetcs
on observed
process

V V (gaussian em-
mision only)

V V

random effetcs
on hidden pro-
cess

V X X V

Dynamical co-
variates

V X V X

E step

Monte-Carlo
EM (MCEM)

Restoration-
Maximisation,
with Monte-
Carlo at times

- Gaussian ran-
dom effects : no
details
- Finite random
effects : leads
to special mix-
ture of HMM.

Stochastic
Approximation
EM (SAEM)
(Monte-Carlo).
Convex combi-
nation between
Q̂(.|θ(m−1))
and new sim-
ulation under
θ(m)

M step

quasi-Newton closed form (be-
cause gaussian
emissions)

no details no details
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EM
Newton-Raphson on the likelihood
Likelihood approximation, and maximisation

Notation : Y = all observed process, Z = all hidden process, U = all
random effects, f θ = density function.

Newton-Rahpson

∇θ logf θ(y) = Eθ

(
∇θ logf θ(y ,Z ,U) |Y = y

)

∇2
θ logf θ(y) = Eθ

(
∇2

θ logf θ(y ,Z ,U) |Y = y
)
+Varθ

(
∇θ logf θ(y ,Z ,U) |Y = y

)

Like EM, integration over Z is analytically possible with
forward-backward, with the exception of the variance term in the Hessian
(in fact I don’t know)

−→ Need to approximate integration over U.
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EM
Newton-Raphson on the likelihood
Likelihood approximation, and maximisation

Newton-Rahpson

Haji-Maghsoudi & al. (2021)
Monte-Carlo Newton-Raphson
HSMM, random effects on observed process.
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EM
Newton-Raphson on the likelihood
Likelihood approximation, and maximisation

Notation : Y = all observed process, Z = all hidden process, U = all
random effects, f θ = density function.

Likelihood approximation, and maximisation

L(θ, y) is an approximation of the likehood f θ(y) =

∫
f θ(y , u)du

θ̂ = argmax
θ

L(θ, y)

f θ(y , u) = f θ(y |u)f θ(u) with f θ(y |u) calculable by forward.

Maximisation Newton-Raphson (or quasi-Newton) most of the time.
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EM
Newton-Raphson on the likelihood
Likelihood approximation, and maximisation

Likelihood approximation, and maximisation

Altman (2007) Altman (2007) Michelot (2023) Koslik (2024)
HMM HMM HMM HMM

random
effetcs on
observed
process

V V V V

random
effetcs on
hidden pro-
cess

V V V V

Dynamical
covariates

V V V V

Approximation’s
type

Gaussian quadra-
ture
+ quasi-Newton

Importance
sampling on∫
f θ(y , u)du

+ quasi-Newton

Laplace quadra-
ture on∫
f θ(y , u)du

+ package
optimix for max-
imisation

Laplace quadra-
ture on∫
f θ(y , u)dudβ

(with
θ = (β, σ2),
β = fixed effects)
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Things to remember

HSMMs are not frequently consider
EM and likelihood approximation well represented, unlike
Newton-Raphson and Bayesian
No realy comparison between methods, except :

few random effects per individual => small integration dimension :
quadrature are efficient (faster than Monte-Carlo)
many random effects per individual => large integration dimension:
Monte-Carlo to be preferred

To eliminate the hidden process we can perform forward-backward
(when taking the expectation in EM), or simply forward (when
integrating in likelihood approximation).

Perspectives (of my PhD thesis)

1 consider HSMMs (with a general model)
2 implement some available methods (Monte-Carlo, quadrature,

variationnal EM, Newton-Raphson, etc.)
3 compare estimation methods 15 / 16
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