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Recap HSMM (explicit duration)

J2 state e3
Sn = dwell time of Sy statee
the n-jump
Jn = the n-state

JO state e ! 3
visited : :

| |
1st jump 2nd jump 3rd jump

“—P—P¢——— >

So

S1 52

Markov chain : P(S,|J, = k) = Geometric (pk)

Semi-Markov chain (explicit duration) :
Poisson (Ax) +1 for example

P(Sp|Jn = k) = any law,
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Why considering random effects in H(S)MM ?

Variability impact of a qualitative covariate (as in GLMM)
Qualitative covariate's effects can be traited as random, when we are not
particularly interested in the effect of each modality, but rather in the law
of the effects.

Taking account long-range dependency (in HMM) [2]
The observed variables (Y;); are already not independent
without random effects, but

COV(\/t7 Yt+h) h—> 0

—+00

And with random effects in the model, under some (restrictive) conditions

COV( Yt; Yt+h) h_)—+>oo k>0
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General model of an H(S)MM with mixed effects

Notation : U = vector of all random effects.
For individual/trajectory number i, Y’ = observed process,
Z' = hidden process.

Definition

e U is a centred Gaussian vector (most of the time)

e Given U = u and ,

Q {(Y',Z")}1<i<z are mutually independent

@ (Y',Z') is an H(S)MM impacted by v and of
individual number i

© Every law that compose the H(S)MM (for explicit duration case) :
- emissions laws
- transitions laws
- dwell time laws
- initial state law
belong to the exponential family, and the expected value depends
linearly on v and through a link function.
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General model of an H(S)MM with mixed effects

Example of HMM, with random effect specific to individual and state
- Emissions laws :

i =i yini u b(nlu) i
f(yilZi = k,U =u) =exp <tk¢kk - C(Yt7¢k)>

oy =x"BY +up @ with uf® ~ N(0,07 1))
— In each state k, we have a different GLMM regression.

- Hidden process laws:
exp ( ”ﬂk + ukI ))
153, ¢ oD

e

P(Zi.,=Zl =k,U=u)=

WlthU NN(O Jkl())

— In each state k, we have a dlfFerent GLMM (multinomial) regression.

Each article is modelled as a special case, or with a design vector
for random effects. or with dvnamical covariates. 5/16



General model of an H(S)MM with mixed effects

Example of HSMM, for dwell time only with random effect specific to
individual and state

For the individual /trajectory

number / : Ji state e
S, = dwell time of the
n-jump of the hidden process state &
J! = the n-state visited by N .
. -jump (n+1)-jump
the hidden process. < S >
Sh

- dwell time, modelled by a Poisson:

P(Spldp =k, U=u)=P(N ) +1

fw =exp (X" B+ uj) with v}, ~ N(0,0?)
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General model of an H(S)MM with mixed effects

Estimation problems
- The integration over random effects is intractable.
- Fixed effects also introduce maximisation difficulties.

These are problems derived from GLMM.

Several estimation methods are available.
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Overview of articles

EM

Newton-Raphson on
the likelihood

Likelihood
approximation, and

maximisation

Bayesian

- Altman (2007)
Monte-Carlo EM
(MCEM)

HMM

- Chaubert (2008)
Restoration-
Maximisation,

with Monte-Carlo

- Maruotti (2011)
no detail
HMM

- Delattre,
(2012)
Stochastique Approx-
imation EM (SAEM)
(Monte-Carlo)

HMM

Lavielle

Haji-Maghsoudi & al.
(2021)

Monte-Carlo Newton-
Raphson

- Altman (2007)
Gaussian quadrature
HMM

- Altman (2007)
Importance sampling
HMM

- Michelot (2023)
Laplace quadrature
HMM

- Koslik (2024)
Laplace  quadrature
with quasi-REML in
addition (integration
over fixed effects of
the likelihood)

HMM

- Michelot (2023)
MCMC Hamiltonian
HMM
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EM
Newton-Raphson on the likelihood

Article details Likelihood approximation, and maximisation

Notation : Y = all observed process, Z = all hidden process, U = all
random effects, f? = density function.

EM
step E

Q(6816™) = Eyim [log (v, 2, U)|Y =]

= Eym | Egim) ['08; oy, ZIU)|U, Y :}’] Y =y| + Eym ['Og o)y =y]

=y imy (0,U.)

(1)
Integration over Z is possible : the function hywm (6, u,y) can be
calculated analytically by forward-backward for a given u.

— Need to approximate integration over U.
step M

Maximisation by Newton-Raphson (or quasi-Newton) most of the time ,
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Article details

EM

Newton-Raphson on the likelihood

Likelihood approximation, and maximisation

EM Altman (2007) Chaubert Maruotti Delattre,
(2008) (2011) Lavielle (2012)
HMM HSMM HMM HMM
random effetcs | V V (gaussianem- | V v
on observed mision only)
process
random effetcs % X X v
on hidden pro-
cess
Dynamical co- Vv X Vv X
variates
Monte-Carlo Restoration- - Gaussian ran- Stochastic
EM (MCEM) Maximisation, dom effects : no | Approximation
E step with  Monte- | details EM  (SAEM)
Carlo at times - Finite random | (Monte-Carlo).
effects : leads Convex combi-
to special mix- nation between
ture of HMM. Q(.|otm=1)
and new sim-
ulation  under
o(m)
quasi-Newton closed form (be- | no details no details
cause gaussian
M step

emissions)
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EM
Newton-Raphson on the likelihood

Article details Likelihood approximation, and maximisation

Notation : Y = all observed process, Z = all hidden process, U = all
random effects, f? = density function.

Newton-Rahpson
Vologf’(v) = Eo ( Valogf’(y, Z,U) |Y = y)
2 0 2 0 0
Vlogf?(y) = Eo ( Valogf'(y,Z,U) |Y = y>+Var9 ( Vologf’(y,Z,U) |Y = y)

Like EM, integration over Z is analytically possible with
forward-backward, with the exception of the variance term in the Hessian
(in fact | don't know)

— Need to approximate integration over U.
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EM
Newton-Raphson on the likelihood

Article details Likelihood approximation, and maximisation

Newton-Rahpson

Haji-Maghsoudi & al. (2021)
Monte-Carlo Newton-Raphson
HSMM, random effects on observed process.
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EM
Newton-Raphson on the likelihood

Article details Likelihood approximation, and maximisation

Notation : Y = all observed process, Z = all hidden process, U = all
random effects, f? = density function.

Likelihood approximation, and maximisation

L(8,y) is an approximation of the likehood f?(y) = /fe(y, u)du

0 = argmax L(6,y)
0

Oy, u) = f(y|lu)fo(u) with fo(y|u) calculable by forward.
Maximisation Newton-Raphson (or quasi-Newton) most of the time.
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Article details

EM
Newton-Raphson on the likelihood

Likelihood approximation, and maximisation

Likelihood approximation, and maximisation

Altman (2007)

Altman (2007)

Michelot (2023)

Koslik (2024)

HMM

HMM

HMM

HMM

random Vv Vv Vv Vv
effetcs on
observed
process
random v 4 v v
effetcs on
hidden pro-
cess
Dynamical Vv Vv Vv Vv
covariates
Approximation’s Gaussian quadra- Importance Laplace quadra- Laplace quadra-
type ture sampling on ture on ture on

+ quasi-Newton J %y, u)du J %y, u)du J 2 (y, u)du

+ quasi-Newton + package | (with
optimix for max- | 6 = (3, 02),

imisation

= fixed effects)
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Conclusion

Things to remember

HSMMs are not frequently consider

EM and likelihood approximation well represented, unlike

Newton-Raphson and Bayesian

No realy comparison between methods, except :

@ few random effects per individual => small integration dimension :
quadrature are efficient (faster than Monte-Carlo)

@ many random effects per individual => large integration dimension:
Monte-Carlo to be preferred

To eliminate the hidden process we can perform forward-backward

(when taking the expectation in EM), or simply forward (when

integrating in likelihood approximation).

Perspectives (of my PhD thesis)

o
o

consider HSMMs (with a general model)

implement some available methods (Monte-Carlo, quadrature,
variationnal EM, Newton-Raphson, etc.)

compare estimation methods 15/16
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